
Introduction

Beaked whales (Ziphiidae) are among the least known of
all mammalian groups (Wilson 1992). The family consists
of 20 described species in five genera: Ziphius, Tasmacetus,
Mesoplodon, Hyperoodon, and Berardius. Most species are
rarely seen at sea due to their preference for deep ocean
waters, elusive habits and, in some cases, possible low
abundance (Mead 1989). Many are known from only a
small number of stranded individuals and fragmentary
skeletal material collected over the last hundred years.
For example, Mesoplodon pacificus is known from only two
skulls and has never been seen alive (Baker 1990).

At least 14 species of beaked whales are known to occur
in the southern hemisphere. While several northern hemi-
sphere species have been studied because of commercial
whaling interest (Nishiwaki & Omura 1972; Benjaminsen
& Christensen 1979; Kasuya 1986), or fisheries bycatch
concerns (Barlow et al. 1995; Henshaw et al. 1997), most
information on southern hemisphere species has been
gathered from strandings. All species of beaked whales
remain incompletely described, from basic life-history
parameters, behaviour and distribution, to individual
variation in morphology.

Determination of species identity is a critical require-
ment for collecting useful information from stranded
animals. The primary diagnostic character for identifica-
tion of beaked whale species is tooth morphology (Moore
1968). Most species have retained only a single pair of
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To assist in the species-level identification of stranded and hunted beaked whales, we
compiled a database of ‘reference’ sequences from the mitochondrial DNA control region
for 15 of the 20 described ziphiid species. Reference samples for eight species were
obtained from stranded animals in New Zealand and South Australia. Sequences for a
further seven species were obtained from a previously published report. This database
was used to identify 20 ‘test’ samples obtained from incompletely documented strandings
around New Zealand. Analyses showed that four of these ‘test’ specimens (20%) had
initially been misidentified. These included two animals of particular interest: (i) a
Blainville’s beaked whale (Mesoplodon densirostris), the first record of this species in
New Zealand waters; and, (ii) a juvenile Andrews′ beaked whale (Mesoplodon bowdoini),
a species known from just over 20 strandings worldwide. A published sequence from a
beaked whale product purchased in the Republic of Korea was identified as a Cuvier’s
beaked whale (Ziphius cavirostris). Levels of intra- and interspecific variation were
compared to determine the potential for misidentification when the database or taxonomy
is incomplete. Intraspecific variation was generally < 2%, and interspecific divergence was
generally > 4.7%. Exceptions were within-species variation in Hyperoodon planifrons,
southern bottlenosed whale (4.12%), which exceeded the variation between the two species
of Berardius (3.78%), and variation between the two specimens assigned to M. hectori,
Hector’s beaked whale (7.14%). The latter case appears to be an error in species identifica-
tion, and could represent the discovery of a new species of beaked whale.
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functional teeth set in the lower jaw, and these erupt only
in adult males. In females and juveniles, the teeth remain
embedded in the gum, and must be extracted by dissec-
tion of the jaw to confirm identity. Many beaked whales
are also very similar in overall appearance, especially
those in the most speciose genus Mesoplodon. A great
potential exists therefore for the misidentification of
beaked whales, even when the whole animal is available
for examination by experts (e.g. Moore 1968; Kitchener &
Herman 1995).

Molecular genetics offers a powerful tool to assist in the
accurate identification of beaked whales. Using the poly-
merase chain reaction (PCR), sufficient DNA for analysis
can be amplified from small samples of skin or other
tissue. These samples can be easily collected by field
agents in attendance at a stranding. Sampling need not be
invasive because sloughed skin from live stranded
animals, which may yet be successfully refloated, can also
yield DNA (Milinkovitch et al. 1994). Even tissue obtained
from animals in advanced stages of decomposition, or
from commercially processed meat products, can contain
enough DNA for identification (Pääbo 1989; Cooper et al.
1992; Baker & Palumbi 1994).

To assist in the identification of beaked whales we have
compiled a molecular genetic database of DNA reference
sequences, including the majority of southern hemisphere
species and available northern hemisphere species
(Henshaw et al. 1997). We report here on the utility of this
DNA database for the identification of stranded beaked
whales from New Zealand’s coasts, as well as whale meat
products from the commercial markets of Asia.

Materials and methods

Reference and test samples

Samples were collected from all stranded beaked whales
in New Zealand as part of a nationwide program coordi-
nated by the Museum of New Zealand Te Papa Tongarewa
and the Department of Conservation. Samples from
Mesoplodon bowdoini and M. hectori were obtained from
strandings in South Australia. A sample was included in
the reference database if the specimen was examined by a
scientist familiar with beaked whale morphology (A. van
Helden, A. N. Baker or C. Kemper), and diagnostic skeletal
material or extensive photographic evidence was obtained
by either the Museum of New Zealand Te Papa Tongarewa
or the South Australian Museum. Where a stranded
animal was not available for examination, and/or was
identified only by field agents, the sample was considered
a ‘test’. A beaked whale test sequence obtained from a
whale meat product bought on the commercial markets of
Korea (Baker et al. 1996) was also analysed to confirm
species identity. Other beaked whale reference sequences

were obtained from GenBank. These specimens were iden-
tified on the basis of skull morphology (Henshaw et al.
1997). As the distribution of most beaked whale species is
incompletely known (Mead 1989), all available reference
sequences from both northern and southern hemisphere
beaked whales were included in our analyses (Table 1).

Sample collection, DNA extraction and sequencing

Samples consisted of small amounts of skin collected
from dead animals, stored in 70% ethanol or frozen prior
to genetic analysis. Total genomic DNA was isolated
using proteinase K, following standard methods (Davis
et al. 1986), as modified by Baker et al. (1994), using less
than a 100 µg sample of tissue from each individual. A
550 bp fragment of the mitochondrial (mt) DNA control
region (D-loop) was amplified by PCR following standard
protocols (Saiki et al. 1988; Palumbi 1996), and primers
light-strand t-Pro whale (5'-TCACCCAAAGCTGRART-
TCTA-3') and heavy-strand Dlp5 (5'-CCATCGWGATG-
TCTTATTTAAGRGGAA-3'). We focused on this portion
of the mitochondrial DNA control region because its
rapid rate of divergence allows even closely related
species to be easily distinguished (Arnason et al. 1993;
Baker & Palumbi 1994; Baker et al. 1996). Following PCR
amplification, the double-stranded DNA was bound to
streptavidin-coated, paramagnetic beads (Dynal Corp.)
by a biotin group attached to the 5' end of one of the
primers. The unbound strand was stripped with 0.1 M

NaOH, and the attached strand was sequenced using
standard solid-phase protocols (Hultman et al. 1989). At
least one individual per species was sequenced in both
forward and reverse directions to confirm results. All
reference sequences have been submitted to GenBank.
Test sequences are available by E-mail from the authors.

Phylogenetic analysis of ‘reference’ sequences and
identification of ‘test’ individuals

Sequences were aligned using the program PILEUP, avail-
able in the GCG package (Deveraux et al. 1984), with ini-
tial gap penalty 2, and extension penalty 0.3. The
multiple sequence files generated were then further
checked and corrected for alignment inconsistencies by
eye. Phylogenetic reconstruction methods using neigh-
bour-joining distance algorithms, as implemented in the
program MEGA (Kumar et al. 1993), and parsimony, as
implemented in the program PAUP 3.1.1 (Swofford 1993),
were used to determine the relationship between the ref-
erence sequences. The heuristic search option, with tree
bisection-reconnection, was used for the parsimony
analyses. For the neighbour-joining method, the Kimura
2-parameter distance correction option, available in
MEGA (Kumar et al. 1993), was used to adjust for multiple
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substitutions. All distances reported are Kimura 2-
parameter corrected unless otherwise stated. The most
parsimonious trees found were consistent with the
neighbour-joining tree in all details relevant to the identi-

fication of test sequences. Only the results of the neigh-
bour-joining analyses are shown here.

Test sequences were added to the reference database
and analysed individually and as a group to establish
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Table 1 Details of beaked whale mtDNA control region (D-loop) reference sequences. Species recorded only from the northern or south-
ern hemisphere, or both, are as indicated. All previously unpublished sequences were generated by M. L. Dalebout from samples col-
lected from stranded animals. Other sequences were obtained from Genbank, as described by Henshaw et al. (1997)

AUNZ
Scientific name Common name code Geographic origin Museum code/Source Genbank No.

Southern hemisphere
Mesoplodon bowdoini Andrews’ beaked whale m18047 South Australia SAM m18047 AF036221
Mesoplodon grayi Gray’s beaked whale MgrH04 New Zealand NMNZ 2160 AF036211

Mgr02 New Zealand NMNZ 2234 AF036212
Mgr03 New Zealand NMNZ 2132 AF036213
Mgr07 New Zealand NMNZ in prep. AF036214
Mgr10 New Zealand NMNZ in prep. AF036215

Mesoplodon layardii strap-toothed whale Mlay01 New Zealand NMNZ files AF036216
Mlay04 New Zealand NMNZ in prep. AF036217
Mlay06 New Zealand NMNZ 2268 AF036218
Mlay07 New Zealand NMN in prep. AF036219

Hyperoodon planifrons southern bottlenosed whale Hpl01 New Zealand NMNZ 2214 AF036224
Hpl02 New Zealand NMNZ 2233 AF036225

Tasmacetus shepherdi Shepherd’s beaked whale Tsh01 New Zealand NMNZ 2184 AF036226
Tsh02 New Zealand NMNZ 2183 AF036227
Tsh04 New Zealand NMNZ 2189 AF236228
Tsh69 Argentina Henshaw et al. (1997) U70469

Berardius arnuxii Arnoux’s beaked whale Bar02 New Zealand NMNZ files AF036229

Northern hemisphere
Mesoplodon bidens Sowerby’s beaked whale Mbi56 Florida, USA Henshaw et al. (1997) U70456

Mbi57 North Atlantic Henshaw et al. (1997) U70457
Mbi58 North Atlantic Henshaw et al. (1997) U70458
Mbi59 North Atlantic Henshaw et al. (1997) U70459

Mesoplodon carlhubbsi Hubb’s beaked whale McarSW North Atlantic Henshaw et al. (1997) U70461

Mesoplodon europaeus Gervais’ beaked whale MeurSW North Atlantic Henshaw et al. (1997) U70460

Mesoplodon stejnegeri Stejneger’s beaked whale Mste62 North Pacific Henshaw et al. (1997) U70462
Mste63 North Pacific Henshaw et al. (1997) U70463

Berardius bairdii Baird’s beaked whale Bba67 North Pacific Henshaw et al. (1997) U70467
Bba68 North Pacific Henshaw et al. (1997) U70468

Northern & Southern hemisphere
Mesoplodon densirostris Blainville’s beaked whale MdenSW North Pacific Henshaw et al. (1997) U70464

Mesoplodon hectori Hector’s beaked whale m16387 South Australia SAM m16387 AF036220
MhecSW North Pacific Henshaw et al. (1997) U70466

Mesoplodon mirus True’s beaked whale MmirSW North Atlantic Henshaw et al. 91997) U70465

Ziphius cavirostris Cuvier’s beaked whale Zca02 New Zealand NMNZ files AF036222
Zca04 New Zealand NMNZ files AF036223
Zca52 North Pacific Henshaw et al. (1997) U70452
Zca53 North Atlantic? Henshaw et al. (1997) U70453
Zca54 North Pacific Henshaw et al. (1997) U70454
Zca55 North Atlantic Henshaw et al. (1997) U70455

AUNZ, University of Auckland; NMNZ, Museum of New Zealand Te Papa Tongarewa; SAM, South Australian Museum.



species identity. The statistical consistency of reference
and test sequence groupings was evaluated by 1000 boot-
strap resamplings of the data and neighbour-joining
reconstructions. Although parsimony and maximum like-
lihood outperform neighbour joining for phylogenetic
reconstruction under many conditions (Hillis et al. 1994),
only the latter allowed bootstrap simulations with the
large number of taxa used here.

The following outgroups were used in the phylogenetic
analyses: pygmy right whale, Caperea marginata, Cma-CSB
(Baker & Palumbi 1994); beluga whale, Delphinapteras
leucas, Dle-WL, (Lillie et al. 1996); pygmy sperm whale,
Kogia breviceps, Kbr-UA (Arnason et al. 1993); humpback
whale, Megaptera novaeangliae, Mno-UA (Arnason et al.
1993); killer whale, Orcinus orca, Oor-RH (Hoelzel et al.
1991); harbour porpoise, Phocoena phocoena, Pho-PR (Rosel
et al. 1995b); and sperm whale Physeter macrocephalus,
Pma-UA (Arnason et al. 1993).

Results

Phylogenetic relationships of reference sequences

A 350-bp fragment of the mtDNA control region was
sequenced for the 19 reference specimens obtained from
strandings in New Zealand and South Australia, repre-
senting eight species from all five genera of beaked
whales. A further 18 reference sequences from seven other
beaked whale species were obtained from GenBank,
giving a total of 37 reference sequences, representing 15 of
the 20 described species of beaked whale (Table 1).
Species missing from the database are: Hyperoodon ampul-
latus, northern bottlenosed whale; M. bahamondi,
Bahamonde’s beaked whale (Reyes et al. 1995); M. ginkgo-
dens, ginkgo-toothed beaked whale; M. pacificus,
Longman’s beaked whale; and M. peruvianus, Peruvian
beaked whale. Another putative species, Mesoplodon sp.
‘A’, is known from observations at sea (Jefferson et al.
1993), but a specimen has never been recovered.
Alignment of these reference sequences with sequences
published for other cetacean species showed that all
beaked whales have a 50-bp deletion in this portion of the
mtDNA control region, extending from position 16143 to
position 16192, with reference to the fin whale mtDNA
genome (Arnason et al. 1991a). This deletion event
uniquely distinguishes the Ziphiidae from all other
whales and dolphins. The phylogenetic reconstructions of
the relationships between the reference sequences (Fig. 1)
strongly supported the monophyly of the Ziphiidae
(100% bootstrap value), but showed only weak support
for other higher-order relationships within the family. All
conspecific sequences grouped together consistently (>
95% bootstrap value), with the exception of the two puta-
tive Mesoplodon hectori sequences (arrows).

Identification of test specimens

The target fragment of the mtDNA control region was
successfully amplified and sequenced for 20 test samples
obtained from incompletely documented strandings.
Subsequent phylogenetic analyses, including other
cetacean taxa as outgroups, unambiguously (100% boot-
strap values) grouped all test sequences with beaked
whale reference sequences. Sixteen of the test sequences
grouped with reference sequences from the species of ini-
tial identification (reconstructions not shown). However,
four test sequences grouped with reference sequences
from other species (Fig. 2; arrows): (1) Mbow01*, initially
identified as Mesoplodon bowdoini, grouped with M. den-
sirostris; (2) Zca01*, initially identified as Ziphius cavi-
rostris, grouped with M. bowdoini; (3) Mgr09*, initially
identified as M. grayi, grouped with the M. hectori from
South Australia; and, (4) Mlay03*, initially identified as
M. layardii, grouped with M. grayi. The beaked whale
sequence from the Korean market sample (KN1) was
identified as Z. cavirostris (arrow 5).

Intra- and interspecific genetic variation

To assess the possibility of misidentification due to an
incomplete database and uncertainties in ziphiid taxon-
omy, pairwise sequence differences (%) were calculated
for the nine beaked whale species for which more than
one reference sequence was available. To minimize the
possibility of underestimating variation by analysing
related animals, only individuals from different strand-
ings were used. These estimates of intraspecific variation
were compared to the minimum interspecific differences
based on pairwise comparisons for all beaked whale
species (Fig. 3). Intraspecific variation was found to be
generally less than 2%, while the interspecific differences
were generally greater than 4.7%. There were three impor-
tant exceptions to this general observation: (i) the two M.
hectori sequences differed by 7.14%; (ii) the two
Hyperoodon planifrons sequences differed by 4.12%; and
(iii) Berardius bairdii differed from B. arnuxii by 3.78%.

Discussion

Our results confirm the utility of molecular genetic tech-
niques for the identification of stranded beaked whales
(e.g. Henshaw et al. 1997). The genetic identity of the
majority of the test specimens (80%) agreed with that
initially determined by agents attending the strandings.
However, the potential for the misidentification of beaked
whales was highlighted by the four test specimens (20%)
that were initially misclassified. This included two ani-
mals of particular importance: (i) a Mesoplodon densirostris
specimen (AUNZ code: Mbow01*), the first record of this
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species from New Zealand waters; and, (ii) a juvenile M.
bowdoini (AUNZ code: Zca01*), a species known from just
over 20 strandings worldwide (Mead 1989). Without
genetic identification, these occurrences would have passed
undocumented and the information gathered attributed to
other species. Our results also confirm the utility of these
methods for identification of hunted beaked whales (e.g.
Baker et al. 1996). The sale of meat from a Z. cavirostris speci-
men on the commercial market in the Republic of Korea
suggests a possible threat to this species or stock from
unregulated bycatch or direct hunting in this area.

Species identification

Although molecular genetics is a powerful tool for species
identification, there are circumstances in which the results
of phylogenetic analysis could be ambiguous. A test speci-
men could be misidentified if: (i) the database of reference
sequences is incomplete; or (ii) the taxonomy of the group in

question is uncertain or incomplete (Baker et al. 1996). The
first difficulty is known to be true in this study (five species
are missing from the database), and the second is probable
(Mead 1989). Evaluating levels of intra- and interspecific
genetic difference in groups of interest can help to assess the
potential for misidentification and indicate possible prob-
lem taxa. For example, a test sequence of a species not repre-
sented in the reference database will group with or basal to
the reference sequences of the next most closely related
species (a branching-order error). An unusually large diver-
gence between the test and reference sequences could indi-
cate that such an intermediate species or taxa is missing
(Baker et al. 1996). This was generally not the case in the
Ziphiidae. Less than 2% intraspecific pairwise sequence
difference was found in seven of the nine species of beaked
whales for which more than one reference sequence was
available (Fig. 3). This is similar to the criterion of ≤ 10 bp
difference (2.7–2.8%) for positive species identification
suggested by Henshaw et al. (1997). These findings are also

GENETIC IDENTIFICATION OF BEAKED WHALES 691

© 1998 Blackwell Science Ltd, Molecular Ecology, 7, 687–694

Fig. 1 Phylogenetic reconstruction of
beaked whale reference sequences, with
other cetacean taxa as outgroups, using
the neighbour-joining method. Bootstrap
values > 50% based on 1000 resamplings
of the data are shown at relevant nodes.
Individual beaked whale sequences are
labelled according to Table 1. The
disparate positions of the South
Australian and North Pacific Mesoplodon
hectori sequences are indicated by arrows.



comparable to levels of variation found in this portion of the
mtDNA control region in other cetacean species, e.g. North
Atlantic and Antarctic minke whales, 0.65% and 1.66%
(Bakke et al. 1996), humpback whales worldwide, 3.0%
(Baker et al. 1993), North Atlantic and North Pacific harbour
porpoises, 0.90% and 1.3% (Rosel et al. 1995a), and sperm
whales worldwide, 1.7% (Lyrholm et al. 1996).

However, in two ziphiid species intraspecific variation
was higher than that normally found in cetaceans. The
two Hyperoodon planifrons sequences differed from each
other by 4.12% (Fig. 3), slightly more than the difference
seen between two other congeneric beaked whale
species, Berardius bairdii and B. arnuxii (3.78%). The large
divergence between the H. planifrons specimens could
indicate a large effective population size or multiple evo-
lutionary significant units (ESUs) within the recognized
species (Moritz 1994). Conversely, the small divergence
between the B. bairdii and B. arnuxii specimens suggests
that these two forms may not warrant species-level dis-
tinction (see also Balcomb 1989). Both possibilities
require larger population samples and the analysis of
additional loci for further evaluation.

More intriguing was the 7.12% difference between the
sequences of the two specimens assigned to M. hectori from

South Australia (m16387) and the North Pacific (MhecSW)
(Fig. 3). This is comparable to the difference seen between
other recognized species of beaked whales. The relatively
large difference between these two sequences, and their
failure to group together in the phylogenetic analyses (e.g.
Fig. 1; arrows), suggests that these animals are not the same
species. Assuming that one of these animals is M. hectori,
the other represents a species not included in the reference
database. Although neither of these specimens have been
examined by the present authors, the morphological
descriptions of both appear inconsistent with any of the
five species missing from the database (C. Kemper, per-
sonal communication; Mead 1981). These findings could
suggest the molecular genetic discovery of a new species of
beaked whale. Detailed morphological comparison of
these specimens is needed to evaluate this possibility.

Phylogenetic relationships within the Ziphiidae

Although the rapid rate of evolution of the mtDNAcontrol
region obscured many of the higher-order phylogenetic
relationships in the Ziphiidae, two observations warrant
comment. First, the close grouping of B. bairdii and B.
arnuxii (Fig. 1), and the relatively low genetic difference
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Fig. 2 Phylogenetic reconstruction used to
identify test sequences relative to
reference sequences using the neighbour-
joining method. Bootstrap values > 50%
based on 1000 bootstrap resamplings of
the data are shown at relevant nodes.
High bootstrap values at the species level
and poor resolution at higher order levels
are typical of rapidly evolving sequences.
Individual beaked whale sequences are
labelled as per Table 1 and text. Outgroups
are as shown in Fig. 1. Arrows 1–4 indicate
the true identity of test sequences from
animals initially misclassified on the basis
of field reports from the strandings (20%
of total test sequences analysed). Arrow 5
indicates the identity of a sequence from a
whale-meat product from the commercial
markets of Korea (Baker et al. 1996).



seen between these species as discussed previously
(Fig. 3), which is consistent with their morphological
descriptions (Balcomb 1989). Second, Mesoplodon carl-
hubbsi failed to group with M. bowdoini in these analyses
(Fig. 1) despite their reported morphological similarity
and sister-species status (Mead 1989).

Further analyses of more slowly evolving mtDNA
genes are necessary to obtain a confident reconstruction
of the evolutionary relationships of the species within this
family, and determine the relationship of this group as a
whole to the rest of the Cetacea. Nuclear markers, such as
intron sequences, could also be useful for systematic
inference, as well as to investigate potential hybridization
as has been documented in other cetacean families, e.g.
‘blue-fin’ hybrids (Arnason et al. 1991b). We cannot dis-
count the possibility that these events could contribute to
the uncertainty of morphological identification for these
poorly described species.
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