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Precision and power in the analysis of social structure

using associations
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I develop guidelines for assessing the precision and power of statistical techniques that are frequently
used to study nonhuman social systems using observed dyadic associations. Association indexes estimate
the proportion of time that two individuals are associated. Binomial approximation and nonparametric
bootstrap methods produce similar estimates of the precision of association indexes. For a mid-range
(0.4e0.9) association index to have a standard error of less than 0.1 requires about 15 observations of
the pair associated, and for it to be less than 0.05, this rises to 50 observations. The coefficient of variation
among dyads of the proportion of time that pairs of individuals are actually associated describes social
differentiation (S ), and this may be estimated from association data using maximum likelihood. With
a poorly differentiated population (S w 0.2), a data set needs about five observed associations per dyad
to achieve a correlation between true and estimated association indexes of r ¼w0.4. It requires about
10 times as much data to achieve a representation with r ¼w0.8. Permutation tests usually reject the
null hypothesis that individuals have no preferred associates when S2 � H > 5, where H is the mean num-
ber of observed associations per individual. Thus most situations require substantial numbers of observa-
tions of associations to give useful portrayals of social systems, and sparse association data inform only
when social differentiation is high.
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To describe and analyse the social systems of nonhumans, social structure are often built upon observations of dyadic

ethologists have assembled a body of quantitative tech-
niques (Whitehead & Dufault 1999; Whitehead 2008).
Some were specifically developed to meet the challenges
of social analysis of nonhumans, others were imported
from other areas of science. In a few areas, such as the
analysis of dominance hierarchies, scientists have analysed
the performance of measures and tests and sequentially
developed improvements (e.g. de Vries 1995; Poisbleau
et al. 2006; de Vries et al. 2006). However, they have rarely
addressed the precision of statistics used to measure social
structure, as well as the power of tests against null hypoth-
eses. This is particularly the case for quantitative methods
based upon observations of dyadic associations (but see
Whitehead 2007, for methods of estimating the precision
of lagged association rates), although models of animal
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associations (Whitehead & Dufault 1999). It is not clear
what can really be concluded from the results of such stud-
ies, or how much data are needed to reveal the attributes
of a social system. Guidelines would be very useful when
planning studies, when assessing the potential of an exist-
ing data set to reveal social structure, and in the evaluation
of analyses. In this paper, I develop guidelines for assessing
the precision and power of some techniques most often
used in the study of nonhuman social systems using ob-
served dyadic associations.

The dyadic association index is an estimate of the
proportion of time that a pair of individuals is associated.
Association indexes can be calculated using any of several
formulae (Cairns & Schwager 1987), and association can
be defined in a wide range of ways. However, from the per-
spective of Hinde’s (1976) conceptual framework of non-
human social structure, to use association indexes as the
basis of a description or model of social structure, associa-
tion should be closely related to the probability of behav-
ioural interaction or communication between the two
dy of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
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members of the dyad (Whitehead & Dufault 1999). If this
condition holds, then an association index tells us some-
thing about the relationship between the pair of animals:
it is a ‘relationship measure’ (Whitehead 1997). The preci-
sion of association indexes is the first issue addressed in
this paper.

With association indexes calculated between all (or at
least many) dyads in a study population, the analyst can
abstract them (using Hinde’s 1976 terminology) into
models or displays of social structure using techniques
such as cluster analysis and multidimensional scaling
(Morgan et al. 1976). However, even when associations ac-
curately reflect interaction rates and relationships, such
displays, which are built upon many imperfect association
indexes, may not well portray real social structures. The
correlation between the patterns in the true association
indexes (the proportion of time that dyads actually do
spend together) and the estimated association indexes in-
dicates the match between a real social structure and its
model. This is the second topic of this paper.

Social analysis is also amenable to a hypothesis-testing
perspective. A frequently useful null hypothesis is that
individuals have no preferences for social partners, with
the alternative that there are preferred and/or avoided
associations between some pairs of individuals. Bejder
et al. (1998) introduced a permutation test for the case
in which dyadic association is defined based upon mem-
bership in a common group. The test controls for the
structure of the data by holding constant both the num-
ber of individuals in each group as well as the number
of groups in which each individual was observed. My col-
leagues and I have developed extensions to the Bejder
et al. (1998) test, for instance, allowing definitions of asso-
ciation not based upon group membership (such as near-
est neighbours) and controlling for demographic events
such as birth, death and movements of animals into and
out of the study area (Whitehead 1999; Whitehead et al.
2005). However, the power of such tests is unknown.
This is the final major goal of this paper.

The second and third objectives required a measure of
the variation in relationships among members of a study
population. The coefficient of variation (CV) in the true
association indexes, called the ‘social differentiation’ by
Whitehead (2008), is suitable for this purpose and can
be estimated with little bias using sparse or less than
perfect data by the method of maximum likelihood
(see Appendix).
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Figure 1. Expected standard errors of an association index (vertical

axis) as a function of its value (horizontal axis) and (a) the number
of observations (d ) or (b) the number of observations of the pair

associated (x), from equation (1).
Most dyadic association indexes are estimates of the
proportion of time that the two individuals are associated
(i.e. the true association index), and so range between 0.0
and 1.0 (an exception is Cole’s (1949) index, which can be
negative). To calculate association indexes, an analyst
divides the study into ‘sampling periods’, which can be
different time periods, surveys, or even encountered
groups. The analyst then enumerates the number of pe-
riods in which the two animals, i and j, are associated
(x), the number of periods in which both animals are
observed but they are not associated ( yij), and the num-
bers of periods in which only one animal is observed ( yi

and yj, respectively). Most association indexes (including
the ‘simple ratio’, ‘half-weight’, ‘twice-weight’ and
‘square-root’) are of the form x/d where d is a function of
x, yij, yi and yj (Cairns & Schwager 1987). For instance,
the simple ratio index, championed by Ginsberg & Young
(1992), is â ¼ x=ðxþ yij þ yi þ yjÞ, and the half-weight is
â ¼ x=ðxþ yij þ ðyi þ yjÞ=2Þ. The different association in-
dexes try to compensate for different forms of sampling
bias (such as a lower probability of identifying pairs of
animals when associated than when alone) by using
different forms of d, the denominator of the association
index (see Cairns & Schwager 1987; Ginsberg & Young
1992).

Suppose a is the true association index, the proportion
of time that the pair are actually in association. Then, if
the sampling periods are assumed independent, x should
be binomially distributed with parameters a and d. It fol-
lows from binomial theory that the standard deviation
of x is:

SDðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� a� ð1� aÞ

p
and the approximate standard error of the association
index, â, is:

SE
�
â
�
¼ SDðx=dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� a� ð1� aÞ

p .
d

As a� â¼ x=d, an estimate of the standard error of the
association index is:

SE
�
â
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â� ð1� âÞ=d

p
¼ â�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� âÞ=x

p
ð1Þ

Thus, equation (1) estimates the standard error of a calcu-
lated association index, â, from â and d, the number of ob-
servations, or x, the number of observed associations.
Figure 1 shows these relationships.
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To have a standard error in a mid-range (0.4e0.9)
estimated association index of less than 0.1, there must
be about 15 observations of the pair associated, and for it
to be less than 0.05, this must be nearly 50, a considerable
number of observations. If two individuals are observed
associated five times with a sample size, d, of 15, the esti-
mated association index is â ¼ 0:33, but its estimated 95%
confidence interval is 0.09e0.57. These animals could be
spending 9% or 57% of their time together, quite different
relationships.

An alternative method of estimating the precision of an
association index â is the nonparametric bootstrap (e.g.
Efron & Gong 1983), in which bootstrap replicate samples
are produced by sampling the sampling periods with re-
placement, and the standard deviation of the âs calculated
from the bootstrap replicates is an estimate of the standard
error of â. The distribution of estimates from bootstrap rep-
licates can give confidence intervals (Efron & Gong 1983).
In practice, estimates of standard errors of association in-
dexes calculated using the nonparametric bootstrap and
the binomial approximation (equation (1)) are usually in
close agreement, as in Table 1, which shows association in-
dexes among 10 bottlenose whales, Hyperoodon ampullatus,
and their standard errors. The bootstrap estimates of stan-
dard error for this data set are a mean of 0.00025 higher
than those from equation (1), and the mean absolute dif-
ference between the two is 0.00052.

Using the denominator of the association index, d, as
the sample size for the binomial distribution is correct
Table 1. Simple ratio association indexes among 10 northern bottlenos
standard errors of the estimates from the binomial approximation (equa

Whale ID no. 1 3 37 45

1
3 0.34

0.08
0.08

37 0.12 0.07
0.05 0.04
0.05 0.04

45 0.12 0.08 0.04
0.05 0.04 0.03
0.05 0.04 0.03

54 0.05 0.03 0.00 0.07
0.03 0.03 0.00 0.04
0.03 0.03 0.00 0.04

102 0.06 0.10 0.02 0.08
0.03 0.05 0.02 0.04
0.03 0.05 0.02 0.04

251 0.00 0.03 0.02 0.10
0.00 0.02 0.02 0.04
0.00 0.02 0.02 0.04

409 0.02 0.03 0.00 0.04
0.02 0.03 0.00 0.03
0.02 0.03 0.00 0.03

531 0.02 0.00 0.05 0.04
0.02 0.00 0.03 0.03
0.02 0.00 0.03 0.03

824 0.19 0.03 0.11 0.06
0.06 0.03 0.05 0.03
0.07 0.03 0.05 0.03

*See Gowans et al. (2001) for details of this study. Used here are only anim
as observed within 1 h of one another.
for the simple ratio index when its assumptions hold
(see Ginsberg & Young 1992), as d is the integer number
of sampling periods over which the individuals might
have been associated. However, with other association in-
dexes, d may be a noninteger, and it is only an approxima-
tion to the sample size. That it is usually a reasonable
approximation is indicated by the very close correspon-
dence for the bottlenose whale data between the standard
errors calculated using equation (1) and by bootstrap
methods when using the half-weight index (mean differ-
ence between standard errors from equation (1) and boot-
strap ¼ 0.00164; mean absolute difference ¼ 0.00181),
twice-weight index (mean difference ¼ �0.00055; mean
absolute difference ¼ 0.00073) and square-root index
(mean difference ¼ 0.00193; mean absolute difference ¼
0.00213).

A drawback of both the binomial or bootstrap methods
of estimating the precision of association indexes is that if
the estimated association index is either â ¼ 0:0 (i.e. x ¼ 0;
never seen associated), or â ¼ 1:0 (i.e. x ¼ d; always seen
associated), then the estimated standard error is exactly
0.0 (see Fig. 1, Table 1), when, in fact, in these circum-
stances there may be considerable uncertainty about our
estimate of either zero or complete association. For in-
stance, if the true association index is a ¼ 0.1, the animals
are associated 10% of the time and the sample size is
d ¼ 10, then there is a 35% probability that x ¼ 0, result-
ing in â ¼ 0 and SEðâÞ ¼ 0, and the appearance of
certainty that they never associate. Similarly, if the true
e whales, Hyperoodon ampullatus, and, beneath each, the estimated
tion 1), in italics, and from 1000 bootstrap replicates, in bold*

54 102 251 409 531 824

0.07
0.04
0.04
0.06 0.04
0.04 0.03
0.04 0.03
0.03 0.07 0.03
0.03 0.04 0.03
0.03 0.04 0.03
0.03 0.00 0.08 0.03
0.03 0.00 0.05 0.03
0.03 0.00 0.04 0.03
0.03 0.00 0.03 0.00 0.03
0.03 0.00 0.03 0.00 0.03
0.03 0.00 0.03 0.00 0.03

als photo-identified on more than 20 days, with association defined
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association index is 0.9, there is a 35% probability that â ¼
1 and SEðâÞ ¼ 0, and in this case, the appearance of cer-
tainty that they always associate. In such situations, it is
probably more useful to estimate the confidence interval
of the association index using a method such as
Wilson’s (1927) score for binomial proportions (here given
for a 95% confidence interval):

CIðaÞ ¼
aþ z2

0:975=2d� z0:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
að1� aÞ þ z2

0:975=4d
��

d
q

1þ z2
0:975=d

where z0.975 is the 97.5th percentile of the normal
distribution.
How Well Do Matrices of Association Indexes
Reflect Social Structure?
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Figure 2. Performance of formula in equation (3) in estimating the

correlation coefficient between the true association indexes and their

estimated values. Each plot represents one run. The diagonal lines in-
dicate ideal estimation. The mean number of observed associations

per dyad (xij) was (a) 2, (b) 6 and (c) 18.
As an association index indicates the relationship of
a dyad, a matrix of association indexes among members of
a community (such as Table 1) indicates their social struc-
ture. However, as shown in the previous section, the true
and calculated association indexes may differ consider-
ably. A measure of the utility of a matrix of estimated as-
sociation indexes in describing social structure is the
correlation coefficient (product-moment or Pearson corre-
lation coefficient) between the true association indexes
and estimated association indexes: rð aij ; âij ; isjÞg

�	�
.

r
��

aij

	
;
�

âij

	
; isj

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
aij

�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
âij

�q ð2Þ

If S is the CV of the true association indexes (see Appen-
dix), Var(aij) ¼ S2 �mean(aij)

2, and meanðâijÞ approxi-
mates mean(aij). Then:

r
��

aij

	
;
�

âij

	
; isj

�
¼ S

CV
�
âij

� ð3Þ

As S can be estimated by maximum likelihood (see Appen-
dix), equation (3) provides an empirical method for assess-
ing the efficacy by which a matrix of association indexes
reflects real social structure for real data.

I examined how well equation (3) performs in practice
using simulations. Each simulation used 10 individuals,
with true association indexes among pairs of them (aij) be-
ing produced by the beta distribution with a mean 0.4 and
a standard deviation equal to 0.1, 0.2, 0.3 or 0.4, for differ-
ent sets of runs. There were 20 runs for each of these stan-
dard deviations and for means of 5, 15 and 45 samples per
dyad (dij). In each run, the program chose actual numbers
of samples per dyad (dij) from the discrete uniform distri-
bution (from zero to twice the mean) and the numbers
of observations of associations per dyad (xij) from the
binomial distribution with parameters aij and dij, then cal-
culated the simple ratio index, âij ¼ xij=dij. The program
then calculated the true correlation between {aij} and

âijg
�

, and compared it with the estimated value from
equation (3), with S estimated using the likelihood
method (see Appendix).
These simulations suggest that equation (3) provides
a reasonably good approximation of the real correlation
coefficient between the true and estimated association in-
dexes (Fig. 2), except for a small negative bias when
r > w0.9, which results from the negative bias in the esti-
mation of S (see Appendix). Thus, equation (3) allows the
evaluation of how well a matrix of association indexes, for
instance Table 1, or a display of the matrix such a cluster
analysis dendrogram or ordination using multidimen-
sional scaling (Morgan et al. 1976), represents the real
pattern of social relationships.

In the case of the bottlenose whale data, using the
relationship in equation (3), the estimated correlation be-
tween the association indexes given in Table 1 and the
true association indexes among the whales was r ¼ 0.60
(bootstrap SE ¼ 0.06), indicating a moderately useful rep-
resentation of social structure.

If we assume that {xij} are Poisson distributed, which is
reasonable if the observations of association are consider-
ably less than the sample sizes (x / d ), equation (2) is
equivalent to:

r
��

aij

	
;
�baij

	�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 1
S2�G

s
ð4Þ

where G is the mean number of observed associations per
dyad, G¼

P
i

P
jsi xij=nðn� 1Þ, where n is the number of

individuals. This relationship (equation (4)) allows calcu-
lation of the number of observations per dyad required
to achieve a desired correlation between the true and esti-
mated association indexes, as is done in Table 2. Equation
(4) assumes that effort is equally concentrated on all
dyads. Unequal distribution of effort will reduce the abil-
ity to assess the pattern in the true association indexes.

The amount of data needed to give a representation
with a given level of correlation to the true pattern varies
greatly with the social differentiation (Table 2). A poorly



Table 2. Estimates of the quantity of data required, as expressed by
the mean number of observed associations per dyad, to obtain cor-
relation coefficients between the true and estimated association
indexes of 0.4 or 0.8 from equation (4), and to reject the null hy-
pothesis (P < 0.05) of no preferred or avoided companions using
the Bejder et al. (1998) test (from equation (5))

Social

differentiation
(S )

Mean number

of observed
associations per

dyad (G) for:

Mean observed

associations per
individual (H ) for

predicted rejection

of null hypothesis of

no preferred/avoided
companionshipr¼0.4 r¼0.8

0.05 76.19 711.11 2000
0.2 4.76 44.44 125
0.8 0.30 2.78 7.8
2.5 0.03 0.28 0.8
10.0 0.002 0.02 0.05
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Figure 3. Ability of a data set to detect nonuniform probabilities of

association using the Bejder et al. (1998) test. The social differentia-
tion (CV of the true association indexes, S ), is plotted against the

mean number of observed associations per individual (H ), with

dots indicating that the results of permutation tests on three simu-

lated data sets using the same parameters had mean(P) > 0.05 (so
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differentiated population (S < w0.2) requires many asso-
ciations per dyad to achieve even a somewhat representa-
tive pattern, whereas when social differentiation is high,
the data requirements are much less. Generally, an analy-
sis requires about 10 times as much data for a representa-
tion with r ¼ 0.8 as for one with r ¼ 0.4 (Table 2).
not rejecting the hypothesis of uniform association probabilities)

and open circles indicating a significant result, with mean(P) < 0.05.

The line shows the relationship S2 � H ¼ 5, which approximately
Power of Tests for Social Preference

divides the significant from the nonsignificant results.
I was unable to derive a useful analytical predictor of the
power of Bejder et al.’s (1998) test for preferred or avoided
association using statistical theory. Therefore I used simu-
lated data sets to examine the power of this test. The data
sets had four social differentiations: S ¼ 0.06 ({aij} chosen
randomly and uniformly in the range of 0.27e0.33);
S ¼ 0.19 ({aij} chosen randomly in the range of 0.2e0.6);
S ¼ 0.58 ({aij} chosen randomly in the range of 0.0e1.0);
and S ¼ 9.95 (aij ¼ 1.0 with probability 0.01, aij ¼ 0.0
with probability 0.99). The simulations used combina-
tions of the following parameters: 10, 60, or 200 individ-
uals in the population, 10, 60, or 200 sampling periods,
and rates of identification per sampling period of 5%,
45% and 90%. The program produced three data sets for
each value of S and all combinations of these parameters,
although, in order to achieve sufficient associations to
make the analysis meaningful, the 5% identification rate
was used only with populations of 200 individuals, and
with S ¼ 9.95, only populations of 60 and 200 individuals
and sampling rates of 45% and 90% were considered. The
routine then tested each data set for preferred or avoided
companions using the Bejder et al. (1998) test.

Figure 3 shows the results of these simulations. I looked,
‘by eye’, for a simple rule that would indicate the result of
the Bejder et al. test. The test usually rejected (P < 0.05)
the null hypothesis of no preferred companions if:

S2 �H > 5 ð5Þ

where H is the mean number of observed associations
per individual (not per dyad as in the case of G;
H¼

P
i

P
jsi xij=n). Usually, the test did not reject the

null hypothesis when the relationship in equation (5)
did not hold (Fig. 3). For the 225 simulated data sets,
this function (equation (5)) had 91% success in predicting
the rejection of the null hypothesis (as compared to 90%
for the multivariate discriminant function using log(S )
and log(H ) as predictor variables). In order to detect
preferred companionship, a data set with low social differ-
entiation (S ¼w0.05) needs thousands of observed
associations per individual, one with intermediate social
differentiation (S ¼w0.5) tens of observed associations,
and one with high social differentiation (S > w2.5) less
than one association per individual (Table 2).

For the bottlenose whale data, whose association matrix
is given in Table 1, S2 � H ¼ 5.05, indicating borderline
ability to reject the null hypothesis of no preferred/
avoided companions.
Computer Program
SOCPROG, apackageofMATLAB (theMathWorks, Natick,
MA, U.S.A.) routines for analysing social structure (http://
myweb.dal.ca/whwhitehe/social.htm), carries out nearly
all of the analyses described in this paper (Wilson’s score is
an exception). A compiled version of SOCPROG, for which
the user does not need MATLAB, is also available at no cost.
Conclusions
The analyses carried out in this paper suggest that in
most situations substantial quantities of data are needed
to give even reasonably useful portrayals of social systems

http://myweb.dal.ca/%7Ehwhitehe/social.htm
http://myweb.dal.ca/%7Ehwhitehe/social.htm
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using association data. For instance, for an association
index of 0.5 to have a 95% confidence interval spanning
less than 0.4e0.6 (and so with SEðâijÞ < 0:05), the index
needs to be based upon at least 50 observations of the
pair together (Fig. 1). And, for a population with an inter-
mediate level of social differentiation (S ¼ 0.5), a mean of
at least 0.76 independent observations of associations per
dyad produces only a somewhat representative set of asso-
ciation indexes with rð aij ; âij Þ ¼ 0:4g

�	�
. Approximately

7.6 independent observations of associations per dyad
achieve a much more reliable representation with r � 0.8.
With S ¼ 0.5, many pairs of dyads differ in their true rates
of association by a factor of two or more. However, in this
situation, the Bejder et al. (1998) test usually rejects the
null hypothesis of no preferred or avoided companions
only when at least 20 associations per individual have
been observed. If the population is less socially differenti-
ated so that differences in associate rates between dyads
are more subtle, then these data requirements increase dra-
matically. Only in cases of highly socially differentiated pop-
ulations can sparse data say much about social structure.

While the mean precision of association indexes and the
validity of representations based upon association indexes
are both functions of the number of observed associations
per dyad, G (equations (1) and (4)), the power of tests for
preferred associations is a function of the number of
observed associations per individual, H. Given a level of
observation effort, G will tend to decrease with population
size and H will tend to increase. Thus, with smaller popu-
lations, association indexes will tend to be more precise
and representations based upon them more valid, whereas
tests of preferred association may be more powerful for
larger populations. More generally, as population size in-
creases, the level of detail revealed by social analyses will
decline while the ability to make general inferences about
the properties of the social structure improves.

It is probable that some published social analyses based
on association indexes contain representations of social
systems and conclusions about social features that have
little validity because of poor analytical precision or
power. Others (e.g. Sokal & Rohlf 1994; Ruxton & Cole-
grave 2006) have stressed previously the general impor-
tance of power and precision for quantitative studies of
biological systems. The results of this paper, together
with recent studies of the performance of other tech-
niques (Poisbleau et al. 2006; Whitehead 2007), allow so-
cial analysts to start to estimate power and precision in
some of their most common scenarios.
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Appendix: Estimating Social Differentiation

Whitehead (2008) suggests that the CV of the true associ-
ation indexes, CV(aij) {i s j}, can be used as a measure of
social complexity, and calls it the social differentiation,
S. The CV of the estimated association indexes cannot pro-
vide an estimate of social differentiation directly as the
variance among estimated association indexes is a com-
pound of the variance in the true association indexes
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and the sampling variance. However, the method of max-
imum likelihood separates these sources of variation.

We can consider xij, the number of observations of in-
dividuals i and j together, to be binomially distributed
with coefficient aij, the true association index, and num-
ber of samples dij, the denominator of the estimated asso-
ciation index. Assuming that the aij are distributed
according to the beta distribution, which gives values be-
tween 0 and 1, with mean m and CV S, then the param-
eters of the beta distribution are b1 ¼ m � ((1 � m)/
(m � S2) � 1) and b2 ¼ (1 � m) � ((1 � m)/(m � S2) � 1), and
the likelihood of the data, the {xij}, given m and S is pro-
portional to:

L¼
Y

ij

Z 1

0

a
xij

ij �
�
1� aij

�ðdij�xijÞ�B
�
aij;b1;b2

�
� d
�
aij

�
ðA1Þ
where B(aij, b1, b2) is the probability density function of
the beta distribution with parameters b1 and b2 at aij. Max-
imum likelihood then proceeds by choosing m and S to
maximize L. The integration, as well as the maximization,
was carried out numerically using MATLAB7.1 (the Math-
Works, Natick, MA, U.S.A.).

Simulation studies indicate that the maximum like-
lihood estimate (using equation (A1)) is approximately
unbiased and of reasonable precision, except when
S � 1.0, when there is a small negative bias, and when
S > w2.0, when the negative bias becomes more substan-
tial (15% negative bias with S � 2.0, 23% negative bias
with S � 4.5). The negative bias at high S may relate to
the numerical methods used for evaluating the probability
density function of the beta distribution at extreme
parameter values. I suggest using the bootstrap procedure
to estimate the precision of the estimate of S.
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