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Inference

Selection ofModels of Lagged Identification
Rates and Lagged Association Rates Using

AIC and QAIC

HAL WHITEHEAD

Department of Biology, Dalhousie University, Halifax,
Nova Scotia, Canada

The lagged identification rate is the probability of identifying an individual given its
identification some time lag earlier. The lagged association rate is the probability
that two individuals are associated given their association some time lag earlier.
Models of lagged identification and association rates fit by maximizing the sums of
non independent log-likelihoods have approximately unbiased parameter estimates.
Simulations suggest that: Akaike-Information-Criterion often selects the true model
of lagged identification rate data; quasi-Akaike-Information-Criterion performs
better for lagged association rates; and confidence intervals for parameters are best
obtained by bootstrap methods for lagged identification rates and quasi-likelihood
or jackknife methods for lagged association rates.

Keywords Bootstrap; Jackknife; Movement; Residence; Social structure.

Mathematics Subject Classification 62P12; 92B99.

1. Introduction

In recent years, selection among models being fitted to biological data has
progressed to become an important subdiscipline of biometrics (Burnham and
Anderson, 2002). The Akaike Information Criterion (AIC; Akaike, 1973), and
variants of it, have become widely used in selecting appropriate models.
For instance, computational routines for mark-recapture methods of estimating
population parameters from data on identifications of marked individuals now
routinely include the AIC for model selection or model averaging (e.g., Pledger et al.,
2003; White and Burnham, 1999).

Records of identifications of individuals can give insight into other areas of
biology, including movements (e.g., Hilborn, 1990) and social structure (e.g., Bejder
et al., 1998). We seek mathematical models of these phenomena from identification
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data, analogous to those that have been achieved for population analyses. Records
of individual identifications often can be used for movement and social analysis, as
well as population assessment. Therefore, the raw data consist of records of who
was where, when, and with whom.

In the analysis of movement among subareas of a habitat, a very useful output
is a model estimating the probability that an individual in area A is the same as
an individual identified in area A (or some other area B) after some time lag, �, a
function which the author has called the lagged identification rate (R���; Whitehead,
2001). Similarly, in social analyses we can seek models of lagged association rates,
the probability that if two individuals are associated now, they will still be associated
� time units later (g���; Whitehead, 1995). A variant of this, the standardized lagged
association rate, g′(�), is the probability that if X and Y are associates, then � time
units later a randomly-chosen associate of X is Y . Standardized lagged association
rates are appropriate measures in cases when all associates may not be identified
(Whitehead, 1995).

Log-likelihoods are the basis of most methods of model selection (Burnham
and Anderson, 2002), but unfortunately, their direct calculation is challenging with
even quite small data sets and fairly simple models of movement or sociality, and
becomes practically impossible for data that have large time spans and/or more
complex models. For instance, to calculate the likelihood that, during 30 sampling
periods, an individual is identified in area A during periods 1, 12, and 20 under a
simple model of migration between a study area and some other habitat involves
considering the probability of 227 = 134�217�728 possible movement histories (as the
individual could have been in either of the areas in each of the 27 periods during
which it was not identified). With social models in which the behavior of each
member of a dyad (pair of individuals) must be considered, the difficulties escalate
even more rapidly.

One solution to this challenge is to consider the sum of log-likelihood elements
which are not necessarily independent (Whitehead, 1995, 2001). In practice, the
author recommends calculating the log-likelihood of the observed reidentifications
between each pair of sampling periods, ignoring the data for all other periods, and
then summing these. So, for lagged identification rates, the calculated quantity is:

L∗ = ∑

�

∑

j�k � �tj−tk�=�

Log �L�R��� �mjk� nj� nk��� (1)

where tj is the time of sampling period j� nj is the number of individuals identified
in period j�mjk is the number of individuals identified in both periods j and k, and
L�R��� �mjk� nj� nk� is the likelihood of the model R��� given the identification and
reidentification data for each pair of sampling periods.

For lagged association rates, the formulation is:

L∗ = ∑

�

∑

j�k � �tj−tk�=�

Log�L�g��� � �aj�X� Y��� �ak�X� Y����� (2)

where aj�X� Y� = 1 if X and Y were recorded as associated in time period j, and
aj�X� Y� = 0 if they were not associated, or either was not identified, during the
sampling period.

In Eqs. (1) and (2), the pairs of periods are grouped by inter-period lag, �, as this
is the dependent variable of the models, and this formulation simplifies calculation.



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
10

:4
6 

7 
D

ec
em

be
r 2

00
7 Lagged Identification Rates and Association Rates 1235

These two-period likelihoods are each calculated easily, even under quite complex
models (and their calculation can be simplified in various ways; see Whitehead,
2001), but they are not independent. The author has shown analytically and using
simulation that maximizing the sum of the non independent log-likelihoods, L∗,
produces approximately unbiased estimates of model parameters (Whitehead, 2001,
Appendix), but could not justify their use in estimating precision or in model
selection. Despite this, likelihood-based models have been used to choose between
models of lagged association and identification rates (e.g., Gowans et al., 2000;
Karczmarski et al., 2005; Ottensmeyer and Whitehead, 2003). The author is partially
responsible for this as he did not initially appreciate the non independence problem
(Whitehead, 1995), and included likelihood, and later AIC, in his computer program
SOCPROG (http://myweb.dal.ca/∼hwhitehe/social.htm) which calculates lagged
identification and association rates.

Bootstrap and jackknife techniques can be used to estimate parameter precision
for lagged identification rates (Whitehead, 2001). For lagged association rates,
bootstrap methods are invalid as resampling the same individual will indicate more
social stability than is real. Jackknife techniques are usable (Whitehead, 1995), but
tend to be both conservative and approximate (Efron and Stein, 1981).

Here we use simulation to explore two possibilities: (a) that despite the non
independence of the summed log-likelihoods, AIC might still give useful guidance in
selecting models of lagged identification rates and lagged association rates; (b) that
the quasi-likelihood variant of AIC, QAIC, which compensates for overdispersed
count data when using Poisson or binomial models (Burnham and Anderson,
2002), as in the lagged identification rate and lagged association rate models,
might compensate for the summing of non independent log-likelihoods. Secondly,
we compare bootstrap, jackknife, likelihood, and quasi-likelihood methods of
calculating confidence intervals of estimated parameters.

2. Methods

2.1. Models of Lagged Identification Rates

Three realistic types of population were simulated, using MATLAB 6.5
(Mathworks, Natick, MA), over 605 consecutive arbitrary time units:

A: A closed population of N = 100 individuals present in the study area
throughout with no birth, death, immigration or emigration;

B: A population of N = 100 individuals in the study area with permanent
emigration at a rate of � = 0�008 per individual per time unit, with departed
individuals being replaced 1:1 by new individuals;

C: A closed population of Z = 300 individuals, members of which can be
either inside or outside the study area. Individuals in the study area leave the study
area at a rate of � = 0�08 per individual per time unit and individuals outside the
study area reenter it with a probability of 	 = 0�04 per individual per time unit. In
this case there will be approximately N = 100 individuals in the study area at any
time (with expected numbers entering and leaving equal at 8 individuals per time
unit).

Each population was randomly sampled at 25 time periods, tj =1–5, 51–55,
101–105, 501–505, 601–605, indicating irregularly spaced field effort, a common
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scenario. One hundred populations were simulated for each of the three population
types and each of 10, 20, or 40 randomly-chosen individuals from the study area
identified per sampling period, as well as with N = 1�000, or (for model C) Z =
3�000. The lagged identification rates were estimated from the identification data
produced from each simulated population using (Whitehead, 2001):

R��� =
∑

j�k � �tk−tj �=� mjk
∑

j�k � �tk−tj �=� nj · nk

� (3)

Three models were fitted to these data using likelihood methods assuming that
each mjk was binomially distributed with parameters nj · nk and R�tk − tj�, as in
Whitehead (2001), even though the data are neither independent nor binomially
distributed. The models were (as in Gowans et al., 2000):

1 
 R��� = �

2 
 R��� = � · e−�·�

3 
 R��� =  · e−�·� + ��

Population Type A theoretically fits model 1 as there is no autocorrelation;
population Type B, a Poisson process, theoretically fits model 2 with � = 1/N and
� = �; population Type C theoretically fits model 3 with � = ��+ ��� � = �/���+
�� · N�,  = �/���+ �� · N� (for derivations of these expressions see Whitehead,
2001).

To set the results in perspective, the author constructed a series of data sets as in
populations of Type B but with true independent binomial structure by replacing the
mjk’s with random numbers from binomial distributions with parameters nj · nk and
� · e−�·�tk−tj � (model 2) and � = 0�01 and � = 0�008 as in theory for population Type
B. We will call these data sets, which have a true independent binomial structure,
population Type BX.

2.2. Models of Lagged Association Rates

Three realistic types of social structure were simulated, all in a closed population of
N = 100 individuals:

D: Individuals form W groups of mean size 10 (so W = N/10 = 10), with
random allocation of individuals to groups at each sampling period-random
associations;

E: Individuals form W groups of mean size 10 (so W = N/10 = 10), and
change groups with probability � = 0�008 per time unit-casual acquaintances;

F: Individuals are randomly allocated to U = 20 permanent social units,
and these are randomly allocated to W = 10 groups, with units changing groups
with probability � = 0�008 per time unit-permanent companions plus casual
acquaintances.

The sampling schemes were as with the lagged identification rates (above),
except that 1, 2, or 4 groups were sampled each period (rather than 10, 20, or
40 individuals) and all members of each selected group were identified. Lagged
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association rates, g���, were estimated from the identification data produced from
each simulated population using (Whitehead, 1995):

g��� =
∑

j�k � �tk−tj �=�

∑
X

∑
Y �=X aj�X� Y�× ak�X� Y�

∑
j�k � �tk−tj �=�

∑
X

∑
Y �=X aj�X� Y�

� (4)

In this expression both the numerator and denominator are summed over all pairs
of sampling periods � time units apart. Summing over each such pair, and over all
individuals �X�, the numerator is the number of other individuals �Y� identified in
the same group as X in both period j and period k, while the denominator is the
number of other individuals identified in the same group as X in period j. g��� is an
estimate of the probability that if X and Y are identified in the same group, then,
� time units later, Y is once again in the same group as X. If group membership is
random, g��� is approximately �1/W�; if individuals form permanent groups, then
g��� = 1.

The following three models of lagged association rates (from Whitehead,
1995) were fit to the simulated data using a binomial model as with the lagged
identification rates:

1 
 g��� = �

4 
 g��� = �1− �� · e−�·� + �

5 
 g��� = ��1− �� · e−�·� + �� · e−·�

Models 2 and 3 are not very realistic for lagged association rate data, as there
would be a finite possibility of individuals disassociating over infinitely short times
(� = 0). Models 4 and 5 address this structurally by making g��� = 1 when � = 0,
and model 1 omits all mention of time lag.

Population Type D, theoretically fits model 1 with � = 1/W ; population Type E
theoretically fits model 4 with � = 1/W and � = 2 · � ·W/�W − 1�; population
Type F also theoretically fits model 4 with � = �W 2 + U − 1�/�W · �W + U − 1�� and
� = 2 · � ·W/�W − 1� (derivations in Appendix). Model 5 introduces mortality or
permanent emigration, potentially realistic features, but not present in the simulated
data.

As with the lagged identification rates, the author constructed a series of data
sets with true binomial structure by replacing the numerator of Eq. (4) in popula-
tions of Type E with random numbers from binomial distributions with parameters∑∑

aj�X� Y� and �1− �� · e−�·�tk−tj � + � (model 4) where � = 1/W = 0�1 and
� = 2 · � ·W/�W − 1� = 0�0178 as in theory for population Type E. We will call these
data sets, which have a true independent binomial structure, population Type EX.

2.3. Output from Model Fitting

Output from fitting each model to each random data set includes the estimates of
parameters (�� �� ) from maximizing the (summed) log-likelihoods, the maximum
(summed) log-likelihoods (L∗, from Eqs. (1) and (2)), and an estimate of the variance
inflation factor, c. c is estimated from the ratio of the goodness-of-fit �2-statistic
to its degrees of freedom, � (Burnham and Anderson, 2002). The �2-statistics were
calculated by comparing the observed total number of pairs of identifications � time
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units apart which were of the same individual with the expected number given the
model and its estimated parameters. Categories were lumped so that all time lag
categories contained an expected value of at least six. The degrees of freedom, �, was
calculated as the number of time delay categories minus the number of parameters
in the model, K, minus one. Two model fitting criteria were considered (Burnham
and Anderson, 2002):

AIC = −2 · L∗ + 2 · K
QAIC = −2 · L∗/ĉ + 2 · K�

For each simulated data set, ĉ was c as calculated for the most general model. If
ĉ > 1, the QAIC is the preferable criterion (Burnham and Anderson, 2002); if ĉ < 1
then the QAIC reverts to the AIC (i.e., ĉ = 1). The model with the smallest AIC or
QAIC was selected as the best-fitting for that data set and criterion.

There are also second-order versions of AIC and QAIC, which correct for
small sample sizes (Burnham and Anderson, 2002), AICc and QAICc. The author
examined their performance on the data sets with smallest sample sizes (ten
individuals per sample with lagged identification rates, and one group per sample
with lagged association rates), using the formulae:

AICc = −2 · L∗ + 2 · K ·M/�M − K − 1�

QAICc = −2 · L∗/ĉ + 2 · K ·M/�M − K − 1��

where M is the sample size (sum, over all lags, of the numerators of Eq. (3) for
lagged identification rates, or Eq. (4) for lagged association rates).

2.4. Confidence Intervals of Parameter Estimates

For each population type, the author compared the performance of several
techniques of estimating the precision of parameter estimates, using only 20
identifications per sampling interval and the theoretically correct model of lagged
identification or association rates for each population type. The true span of the
95% confidence interval was estimated from the distribution of the parameter
estimates of the 100 runs of each population type, and for 100 additional runs 95%
confidence intervals were estimated for each parameter in four ways:

• bootstrap using 1,000 samples, with replacement, of the identified individuals
(only for lagged identification rates);

• jackknife with sampling periods within 50-time-unit intervals being omitted
in turn (Whitehead, 1995), giving five jackknife replicates;

• likelihood support interval, defined for any parameter as the range of values
such that the (summed) log-likelihood, maximizing over all other parameters, is
within two of the overall maximum (summed) log-likelihood (Edwards, 1992);

• quasi-likelihood support interval, defined for any parameter as the range
of values such that the (summed) log-likelihood, maximizing over all other
parameters, is within 2 · ĉ of the overall maximum (summed) log-likelihood.

For each population type and parameter of the correct model, we present the
median and standard deviation of the spans of the estimated 95% confidence intervals
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over the model runs, as well as the coverage, the percentage of confidence intervals
containing the true parameter value. The coverage should theoretically be 95%.

3. Results

3.1. Model-Fitting: Lagged Identification Rates

Figure 1 shows lagged identification rates and fitted models for one run of each
model type and number of identifications per sampling period. When true models,
or overly general models, were fit to the simulated data sets, curves generally fit the
data well.

The distribution of models selected using AIC and QAIC is shown in Table 1.
With population Types A and C, the theoretically correct model was usually
selected. However, when using population Type B there was frequent overfitting,
with model 3 being selected rather than model 2. There was also some overfitting
with the true independent binomial data (population Type BX), but it was less
pronounced than for population Type B. When the incorrect model was selected
for runs of population Types A and C, then �AIC, the difference between the AIC

Figure 1. Lagged identification rates (‘o’, with time lags aggregated so that each time lag
interval contained at least 5% of the data points as indicated by the denominator of Eq. (3))
and fitted models of one run for each model type (‘A’ closed; ‘B’ permanent emigration;
‘C’ immigration/emigration from a larger population) and number of identifications per
sampling period (10, 20, 40). Fitted models were: 1: – : R��� = �; 2: - - : R��� = � · e−�·�;
3: . . . : R��� =  · e−�·� + �.
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Table 1
Summary of results of model selections on simulated data sets for lagged

identification rates: for each population type and number of identifications per
sampling period, the table gives the number of runs (out of 100) in which models

1, 2, or 3 were selected using either the AIC or QAIC criteria. The correct
selections are shown in bold. The final column tabulates the number of runs in

which QAIC was used (i.e., ĉ > 1)

Model selected Model selected
using AIC using QAIC QAIC

Population Identifications preferred
type per sample 1 2 3 1 2 3 (ĉ > 1)

A 10 87 10 3 87 10 3 26/100
A 20 87 12 1 87 12 1 0/100
A 40 97 3 0 97 3 0 0/100
B 10 0 69 31 0 76 24 53/100
B 20 0 47 53 0 48 52 29/100
B 40 0 34 66 0 35 65 29/100
C 10 0 2 98 0 2 98 64/100
C 40 0 0 100 0 0 100 45/100
C 20 0 0 100 0 0 100 13/100
BX 10 0 79 21 0 88 12 53/100
BX 20 0 76 24 0 79 21 49/100
BX 40 0 84 16 0 87 13 48/100

of the theoretically-correct model and that of the chosen model, was almost always
less than 4.0 indicating substantial support for the theoretically-correct model in
situations when AIC is theoretically valid (Burnham and Anderson, 2002). However,
with population Type B, there was little support for the theoretically correct model
(indicated by �AIC or �QAIC> 4) in 22–24% of the 300 runs.

QAIC was selected over AIC (as ĉ > 1) in 259 of the 900 runs, especially when
there were fewer data (Table 1). The two criteria selected different models in only
nine of these runs, with QAIC selecting the theoretically correct model in all these
cases. QAIC was also frequently selected with the true independent data (population
Type BX), indicating that the selection of QAIC over AIC does not necessarily
indicate non independent data (Table 1).

Results with N = 1�000 (and so Z = 3�000) were qualitatively similar in most
respects to those with N = 100, and so are not presented in detail. The theoretically
correct model was generally chosen by both AIC (73% of time) and QAIC (76%
of time). When N = 1�000, population Type B was overfit less often (12–29%
depending on number of identifications per sample and use of AIC or QAIC)
than with N = 100 (24–66%). However, in contrast to runs with N = 100, when
N = 1� 000 population Type C was frequently underfit when there were 10 or
20 identifications per sample (AIC choosing models 1 or 2 in 58% and 14%
of runs, respectively), but not with 40 identifications per sample in which the
theoretically correct model 3 was always chosen. This underfitting may be explained
by the sparsity of repeat identifications of the same individual, which are needed
to discriminate the more complex models; with Z = 3�000, the expected number
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of individuals identified three or more times is about 0.2 with 10 identifications
per sample, and 1.8 with 20 identifications per sample (calculated using binomial
probabilities).

Using the second-order information criterion, which corrects for small sample
size, made very little difference to the results of the model selection. For population
Type B, AICc selected model 2 rather than the AIC-selected model 3 for three runs,
and QAICc selected model 2 rather than the QAIC-selected model 3 for two runs.
For all other runs, including all those investigating lagged association rates, the
second-order criterion selected the same model as AIC and QAIC.

3.2. Model-Fitting: Lagged Association Rates

The lagged association rates and fitted models for one run of each model type
and number of identifications per sampling period shown in Fig. 2 suggest that
true, or overly general, models generally fit the data well. QAIC was almost always
chosen over AIC when fitting lagged association rates, indicating overdispersion,
and the use of QAIC greatly improved performance in model selection for lagged
association rates (Table 2). However, even when using QAIC, with all population

Figure 2. Lagged association rates (‘o’, with time lags aggregated so that each time lag
interval contained at least 5% of the data points as indicated by the denominator of Eq. (4))
and fitted models of one run for each model type (‘D’ random; ‘E’ casual acquaintances;
‘F’ permanent companions plus casual acquaintances) and number of groups identified per
sampling period (1, 2, 4). Fitted models were: 1: – : g��� = �; 4: - - : g��� = �1− �� · e−�·� + �;
5: . . . : g��� = ��1− �� · e−�·� + �� · e−·�.
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Table 2
Summary of results of model selections on simulated data sets for lagged

association rates: for each population type and number of identifications per
sampling period, the table gives the number of runs (out of 100) in which models

1, 4, or 5 were selected using either the AIC or QAIC criteria. The correct
selections are shown in bold. The final column tabulates the number of runs in

which QAIC was used (i.e., ĉ > 1)

Model selected Model selected
using AIC using QAICGroups QAIC

Population identified per preferred
type sample 1 4 5 1 4 5 (ĉ > 1)

D 1 61 5 34 81 4 15 100/100
D 2 56 8 36 84 3 13 100/100
D 4 52 11 37 76 8 16 100/100
E 1 0 38 62 0 78 22 99/100
E 2 0 28 72 0 54 46 100/100
E 4 0 21 79 0 41 59 100/100
F 1 0 27 73 1 63 36 100/100
F 2 0 11 89 0 33 67 100/100
F 4 0 4 96 0 16 84 100/100
EX 1 0 88 12 0 87 13 10/100
EX 2 0 81 19 0 79 21 9/100
EX 4 0 84 14 0 84 16 9/100

types and sampling rates, there was quite frequent overfitting with overly complex
models being chosen (22–79% of runs as opposed to 12–21% with the independent
binomial data of model EX), but almost no underfitting (Table 2). Quite frequently
(20% of runs), there was little support for the theoretically correct model (indicated
by �QAIC> 4; Burnham and Anderson, 2002).

3.3. Confidence Intervals of Parameter Estimates

Table 3 lists the results of the investigation of the width of estimated confidence
intervals produced by different estimation procedures (parameter estimates showed
little evidence of bias). For the lagged identification rates, all the methods give
confidence spans not too far from the true value for all estimated parameters
and similar coverage probabilities (means 84–92%), although the bootstrap method
appeared best in terms of providing confidence spans generally closest to the true
values, and with least variation, as well as the best coverage (mean 92%), close to
the nominal 95%.

For the lagged association rates, the results are less encouraging (Table 3).
Bootstrap estimates are invalid, and likelihood and quasi-likelihood confidence
intervals are generally much too narrow, and have a low probability of containing
the true parameter value. Confidence intervals for the lagged association rates from
the jackknife procedure have widths closest to the true widths, although these also
tend to be somewhat too narrow, to have high variance, and the coverage is less
good than for the quasi-likelihood method (mean coverage probability 48%).
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Table 3
Comparison of width of confidence intervals of models of lagged identification and
association rates. The approximate true width is the range between the 2.5 and
97.5% percentiles of the estimated parameters for 100 random runs. Also shown
are the median standard deviations of the widths (in round parentheses) and
coverages [in square brackets] estimated over runs using bootstrap (1,000
bootstrap replicates), jackknife, likelihood, and quasi-likelihood methods

Median upper 95% c.i. – Lower 95% c.i. (SD):

Population Model Parameter True Bootstrap Jackknife Likelihood Quasi-likelihood

Lagged identification rates
A 1 � 0.00083 0.00083 0.00133 0.00115 0.00115

(0.00012) (0.00049) (0.00001) (0.00001)
[98%] [96%] [100%] [100%]

B 2 � 0.00535 0.00455 0.00579 0.00247 0.00253
(0.00110) (0.00268) (0.00062) (0.00065)
[76%] [85%] [55%] [57%]

B 2 � 0.00296 0.00248 0.00263 0.00228 0.00236
(0.00035) (0.00105) (0.00017) (0.00025)
[92%] [77%] [89%] [93%]

C 3 � 0.31382 0.32775 0.40874 0.38301 0.40484
(0.16077) (0.26786) (0.17513) (0.18191)
[94%] [74%] [87%] [87%]

C 3 � 0.00456 0.00531 0.00534 0.00652 0.00691
(0.00200) (0.00304) (0.00249) (0.00268)
[98%] [77%] [94%] [95%]

C 3  0.00101 0.00092 0.00154 0.00076 0.00080
(0.00016) (0.00058) (0.00007) (0.00008)
[91%] [95%] [89%] [91%]

Lagged association rates
D 1 � 0.02671 0.01935 0.01093 0.02252

(0.00735) (0.00068) (0.00201)
[39%] [53%] [88%]

E 4 � 0.06124 0.03133 0.01547 0.04049
(0.01992) (0.00124) (0.00521)
[43%] [38%] [86%]

E 4 � 0.01345 0.01257 0.00197 0.00518
(0.00582) (0.00055) (0.00158)
[53%] [21%] [55%]

F 4 � 0.26979 0.15419 0.02101 0.07664
(0.14848) (0.00493) (0.01931)
[50%] [9%] [44%]

F 4 � 0.05384 0.03237 0.00239 0.00949
(0.17389) (0.00816) (0.03127)
[55%] [11%] [35%]

4. Discussion

The analyses presented here confirm that maximizing the sum of non independent
log-likelihoods produces models which provide good visual fits to lagged
identification and lagged association rate data (Figs. 1–2). The results (Table 3)
also corroborate the use of the bootstrap method for estimating the precision of
parameters of models of lagged identification rates (Whitehead, 2001). As suggested
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earlier (Whitehead, 1995), the temporal jackknife, in which data from particular
time intervals are omitted sequentially in the calculation of pseudovalues, is a
feasible method of estimating the precision of parameters in models of lagged
association rates. However, these jackknife estimates of precision are themselves not
very precise, may overestimate precision, and quasi-likelihood confidence interval
estimates seem to have rather better coverage probabilities (Table 3).

The results of the investigations of using AIC or QAIC for selecting models
of lagged identification or lagged association rates are more equivocal, and depend
very much on the data set and models being compared. With models of lagged
identification rates, the use of QAIC only marginally improved performance over
AIC (Table 1), whereas for lagged association rates QAIC generally performed
much better (Table 2). In some cases, the criteria performed very well, almost
invariably selecting the correct model (Tables 1 and 2). However, with population
Types B and F, incorrect models were selected more frequently than correct ones,
and sometimes there was very little support for the correct model. Except in the
case of very sparse data (1,000 individuals and a low sampling rate), overfitting was
much more of a problem than underfitting, as found in other simulation studies
of the effectiveness of AIC (e.g., Andres and Currim, 2003), and predicted by
the theoretical work of Woodroofe (1982). Overfitting was also present with true
independent binomial data (models BX and EX; Tables 1 and 2), but less prevalent
than with realistic data.

Although the author used several different types of data and sampling rates,
as well as some of the most obvious models that can be fit to lagged identification
and lagged association rate data, he only examined a very small portion of the
types of data and models that are possible. Furthermore, he has not used simulation
to examine either lagged identification rates between areas (Whitehead, 2001), or
standardized lagged association rates. Given the large variation in the success of
model selection using AIC and QAIC in this sample, we conclude that these criteria
should be used cautiously with lagged identification and lagged association rate
data. However, even with true independent and well-distributed data, these criteria
are not always successful (Tables 1 and 2; Burnham and Anderson, 2002), so the
author does think that, when used cautiously, AIC or QAIC may be useful in
informing us about movements and associations of identified individuals through
lagged identification and association rates.

Both lagged identification and association rates are principally descriptive
measures, they illustrate how residence within areas and associations between
animals change with time. As is the case with population Types E and F,
quite different processes can produce the same pattern of lagged association, or
identification, rates. Thus, the patterns observed, and models fit, do not prescribe the
underlying process. There are methods for fitting mechanistic models to some types
of movement data (e.g., Hilborn, 1990), but, to my knowledge, the corresponding
techniques have yet to be developed for social analyses.

Appendix

Theoretical Parameter Estimates for Lagged Association Rates

In models 1 and 4, � is the probability of being in the same group again after a very
long time, which for populations D and E is simply 1/No. groups = 1/W .
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The lagged association rate, g���, is the probability that if X and Y are identified
in the same group, then, � time units later, Y is once again in the same group as X.
Then, in the independent switching model of population Type E, given g���:

g��+ ��� = g��� · ��1− ������2 + �����2 · s�
+ �1− g���� · �2 · ��� · �1− ���� · s + �����2 · s�

where ��� is the probability that an individual switches to a different group in ��,
and s is the probability that, given the individual switches groups, it switches to a
particular group (containing the other individual). Ignoring the small terms in (���2:

�g��� = −�g���− �1− g���� · s� · 2����

Integrating, and using g�0� = 1, gives:

g��� = 1/�1+ s�e−2·�1+s�·�·� + s/�1+ s��

In population Type E, � = � and s = 1/�W − 1�. Thus, with model 4, � = 1/W and
� = 2 · � ·W/�W − 1�.

In population Type F with permanent units of size U , let the probability that
grouped individuals are also units members be u. Then:

g��� = u+ �1− u� · �1/�1+ s�e−2·�1+s�·�·� + s/�1+ s���

Now, the probability that two individuals are members of the same unit is 1/U ,
and the probability that they are members of different units but the same group is
�1− 1/U�/W . Thus, u = W/�W + U − 1�, and � and s are as for population Type E.
Substituting:

g��� = �W 2 + U − 1�/�W · �W + U − 1��

+ �U ·W −W − U + 1�/�W · �W + U − 1�� · e−2·�·�W/�W−1��·��

From this, for model 4, � = �W 2 + U − 1�/�W · �W + U − 1�� and � = 2 · � ·
W/�W − 1�.
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