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Abstract: A population of northern bottlenose whales (Hyperoodon ampullatus) inhabits the waters along the edge of
the Scotian Shelf. The most important habitat of this population is the Gully, a large submarine canyon, where animals
were photographically identified between 1988 and 2003. Open mark–recapture models, including mixture models that
allow for heterogeneity in identifiability and (or) mortality among individuals, were fitted to identification-history data.
Models without heterogeneity in identifiability had poor fit to the data and underestimated population size. The popula-
tion is estimated to contain about 163 animals (95% confidence interval 119–214), with no statistically significant
temporal trend. About 12% of the population has a high probability of being identified within the Gully in any year.
Many of them are mature males. The remainder is less likely to be identified in the Gully during any year, spend gen-
erally shorter periods in the Gully even in years when they are found, and are more likely to be female. This and other
work indicate a poorly mixed population inhabiting the canyons and other deeper waters off the Scotian Shelf. Non-
parametric bootstrap methods were used to validate the estimation procedure and to estimate the efficiency of future
fieldwork scenarios.

Résumé : Une population d’hypéroodons arctiques (Hyperoodon ampullatus) vit dans les eaux le long de la plate-
forme néo-écossaise. L’habitat le plus important pour cette population est le Gully, un grand canyon sous-marin, où les
animaux ont été identifiés par photographies entre 1988 et 2003. Nous avons ajusté aux données des suivis des
identifications des modèles ouverts de marquage et de recapture, dont des modèles de mélange qui tiennent compte de
l’hétérogénéité individuelle de la fiabilité des signalements et (ou) de la mortalité. Les modèles qui ne tiennent pas
compte de l’hétérogénéité des signalements s’ajustent mal au données et sous-estiment la taille de la population. La
population contient, selon notre estimation, environ 163 individus (intervalle de confiance de 95 %, 119–214) et ne
montre pas de tendance temporelle significative. Environ 12 % des individus de la population ont une forte probabilité
d’être signalés dans le Gully durant l’année. Plusieurs d’entre eux sont des mâles matures. Les autres sont moins
susceptibles d’être signalés dans le Gully dans une année ou l’autre, ils passent généralement moins de temps dans le
Gully même les années où on les y retrouve et ils ont plus de chances d’être des femelles. Notre étude et d’autres
indiquent que c’est une population peu intégrée qui habite les canyons et les autres eaux profondes au large de la
plate-forme néo-écossaise. Des méthodes de bootstrap non paramétriques ont servi à valider notre processus
d’estimation et à évaluer l’efficacité des différents scénarios futurs de recherche sur le terrain.

[Traduit par la Rédaction] Whitehead and Wimmer 2585

Introduction

Population monitoring is key to both management and
conservation. One of the principal techniques used in wild-
life monitoring is mark–recapture, in which animals are indi-
vidually identified in some way, and then the patterns of
recapture, or re-identification, are used to infer population
parameters, including population size (e.g., Seber 1992).
Crucial assumptions of almost all the statistical techniques

used in mark–recapture analyses are that all animals have
the same probability of surviving between sampling periods
and the same probability of being recaptured in any period.
Especially with open populations, in which individuals may
enter or leave the population between sampling periods, the
possibility that there is heterogeneity in either mortality or
rate of identification has received rather little attention, al-
though heterogeneity may substantially bias mark–recapture
population estimates (e.g., Pollock 1982). Here we investi-
gate the effects of heterogeneity on mark–recapture esti-
mates of population size and population trend for a set of
animals that are a focus of conservation attention.

Northern bottlenose whales (Hyperoodon ampullatus) are
residents of the northern North Atlantic. The southernmost
location where they can be found reliably is in the Gully, a
submarine canyon on the edge of the Scotian Shelf (44°N,
59°W). Photoidentification studies in the Gully since 1988
have allowed mark–recapture assessments of the size and
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other characteristics of the Gully population (Whitehead et
al. 1997; Gowans et al. 2000a). The most recent assessment
(Gowans et al. 2000a), using data collected between 1988
and 1999, suggested a temporally stable population of about
130 individuals using the Gully, although only about 34% of
the population were estimated to be in the canyon at any
time. The small size of this population, together with threats
from entanglement in fishing gear and the expansion of oil
and gas exploration and development in the waters sur-
rounding the Gully, led the Scotian Shelf population of
northern bottlenose whales to be assessed as endangered by
the Committee on the Status of Endangered Wildlife in Can-
ada in 2002 (COSEWIC 2002). The presence and predica-
ment of northern bottlenose whales in the Gully were also
important factors in the development of the Gully Marine
Protected Area created in 2004 (http://www.dfo-mpo.gc.ca/
media/backgrou/2004/hq-ac61a_e.htm). Thus, from the con-
servation perspectives of both endangered species and pro-
tected areas, it is important to monitor the status of the
northern bottlenose whales that inhabit the Gully.

Previous assessments of the population of northern bottle-
nose whales using the Gully (Whitehead et al. 1997; Gowans
et al. 2000a) were limited by a lack of information of geo-
graphical population structure. Since 2000, studies have im-
proved our knowledge of the distribution and movements of
animals outside the Gully. Substantial, and statistically sig-
nificant, differences have been found between the distribu-
tions of mitochondrial haplotypes among animals in the
Gully and those from samples of whales killed by Norwe-
gian whalers in the Labrador Sea, the closest area to the
Scotian Shelf where bottlenose whales can be found reliably
(Dalebout et al. 2001; M. Dalebout, Department of Biology,
Dalhousie University, Halifax, NS B3H 4J1, personal com-
munication). There were also no matches between a sample
of seven photoidentifications collected off Labrador in 2003
and the Scotian Shelf catalogue. The Labrador Sea concen-
tration is about 2000 km from the Gully through the deeper
(>500 m) waters that are the habitat of this species.

We have also looked for bottlenose whales closer to the
Gully. A survey of the 1000 m depth contour between New
Jersey and the southern Grand Banks in 2001 found northern
bottlenose whales in the Gully and in Shortland and Haldi-
mand canyons, which also lie on the edge of the Scotian
Shelf, 50 km and 100 km east of the Gully, respectively, but
nowhere else (Wimmer and Whitehead 2004). The presence
of bottlenose whales in Shortland and Haldimand canyons
was confirmed in 2002. While some of the animals photo-
graphically identified in Shortland and Haldimand canyons
in 2001 and 2002 were known from the Gully, and a number
of movements between the canyons were documented, there
was incomplete mixing, with some animals showing prefer-
ences for particular canyons (Wimmer and Whitehead 2004).
This suggests that a population size estimated just from data
collected in the Gully (as in Whitehead et al. 1997 and
Gowans et al. 2000a) may be an underestimate for the entire
Scotian Shelf population and that the population being iden-
tified in the Gully is heterogeneous in identification rates.

Heterogeneity, in which individuals have substantially dif-
ferent probabilities of survival or identification, is a major
source of potential error in mark–recapture studies (e.g.,
Hammond 1990). The rate of identification, or identifiability,

of an animal is here defined as the probability that if only
one member of the population is identified, it is that animal.
Identifiabilities may vary among members of a population
because of differences in behaviour, including preferred
group size, variation in the quality of the markings used to
make identifications, movement patterns, or habitat use. The
results from the photoidentifications in the three canyons
showed variation among individuals in movement patterns
and habitat use, and thus potential heterogeneity in
identifiability within the Gully.

With this new information about geographic population
structure, together with additional photoidentifications col-
lected during the period 2000–2003 that were not available
for the most recent assessment (Gowans et al. 2000a), it
made sense to reassess this population, incorporating and
examining the issue of heterogeneity in identification rates
within the Gully. Thus the primary questions being ad-
dressed in this paper are as follows: what is the size of the
Scotian Shelf population of northern bottlenose whales; is
there a temporal trend in numbers; is there evidence for
heterogeneity in identification rates; and, if there is such evi-
dence, what are the characteristics of individuals with high
and low rates of identification in the Gully? To address these
questions, we use modifications of newly developed, open
mark–recapture methods, which incorporate heterogeneity
using mixture models (Pledger et al. 2003). As the technique
is new, its performance is tested using parametric bootstrap
methods: simulated data sets are produced using the assumed
population model and estimated parameters and are then re-
inserted into the estimation models (see Buckland and
Garthwaite 1991). Comparisons between the input and out-
put parameters allow bias and precision to be estimated.

Monitoring the health of this population in the future will
be important from both the endangered species and pro-
tected areas perspectives, yet photoidentification research is
costly in both financial terms and, potentially, in terms of
disturbance to the animals and the protected area. Thus, we
also examine the efficiency of different sampling regimes for
monitoring future trends in the population of Scotian Shelf
bottlenose whales.

Methods

Fieldwork
Northern bottlenose whales were individually identified

using photographs taken in the Gully during the summers
between 1988 and 2003, although no data usable for this
analysis were collected in 1991, 1992, and 2000, years in
which effort was very low (Table 1). Most field work was
carried out from 10 m (1988–1990) or 12m (1993–2003)
auxiliary sailing vessels, but additional data were collected
from larger vessels (during surveys of the US National Ma-
rine Fisheries Service and the Department of Fisheries and
Oceans Canada) or inflatables deployed from them in 2001,
2002, and 2003. The animals were photographed, usually us-
ing 35 mm cameras with 300 mm lenses and black and
white film, although digital cameras were used during a few
of the later studies. When animals were closer than about
30 m from the vessel, photographs were taken of both the
left and right flanks and dorsal fins, as well as the melon
(forehead). Photographs were taken whenever animals were
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within range and (except in 1999) of all animals in the group
irrespective of obvious markings or whether the animal had
been previously photographed.

Analyzing photoidentifications
Photoidentifications were processed following the proto-

col described by Gowans and Whitehead (2001). All images
were given a quality (Q) grade ranging from Q = 1 (poor) to
Q = 6 (excellent) based upon the characteristics of the image
(focus, exposure, angle of fin relative to the negative plane,
and proportion of image filled by fin), but independent of
the marks on the fin and surrounding area. Only images with
Q ≥ 4 were used in subsequent analyses as recommended by
Gowans and Whitehead (2001).

Some of the marks found on the fins and flanks of north-
ern bottlenose whales change over intervals of years (Gowans
and Whitehead 2001). Thus this population analysis was re-
stricted to animals marked with notches on the dorsal fin, in-
dentations on the back, and mottled patches for none of
which there was evidence of change with time (Gowans and
Whitehead 2001). These are referred to as reliably marked
individuals. The proportion of Q ≥ 4 photographs showing
reliably marked individuals and its inverse, the ratio of all
photographs to those showing reliably marked animals, were
calculated for all years combined (excluding 1999, when
photographs were not taken randomly with respect to mark-
ings). Coefficients of variation for both these ratios were es-
timated from the variation in the ratios calculated separately
for each of the years, weighting by the number of Q ≥ 4
photographs taken during the year for the proportion of reli-
ably marked individuals, and the number of reliably marked
photographs for its inverse.

As each year’s data were analyzed, photographs were
matched against the catalogue built up from previous years
as described by Gowans and Whitehead (2001). Data from
photographs showing the left and right sides of animals were
processed separately (except for the calculation of the pro-
portion of reliably marked individuals, as reliable marks in

dorsal fins, such as nicks, are visible from both sides;
Gowans and Whitehead 2001).

Where possible, animals were assigned to one of three
age–sex classes (mature males, subadult males, and females–
immatures) using photographs of their melon (forehead) area
as described by Gowans et al. (2000b).

Population analysis
Assessments of the population of reliably marked individ-

uals using the Gully were made with a variety of population
models (including those used by Gowans et al. 2000a). To
incorporate the possibility of heterogeneity in either mortal-
ity or identification rate, we constructed two-component fi-
nite mixture models following the methods of Pledger et al.
(2003). The models are formally described in Appendix A.
They all condition on the first identification of each individ-
ual and assume overall identification rates in each year j of
nj /Nj (the number of animals identified during the year di-
vided by the estimated population size that year, as in Seber
1982, p. 557). Heterogeneity is incorporated by having two
classes of individual (A and B), which may have different
identification and (or) mortality rates. The population can
also increase or decrease at a constant rate per year. Thus,
the full model has the following parameters: NM, population
of reliably marked animals using the Gully at midpoint of
sampling (1995–1996); r, proportional rate of increase in
population per year; α, proportion of population in class A
(with 1–α in class B); β, ratio of identifiability of class B an-
imals compared with class A animals; δA, mortality rate of
class A animals per year; δB, mortality rate of class B ani-
mals per year.

Simpler models were investigated by using the following
restrictions or combinations of them: r = 0, no trend; α = 1,
no heterogeneity; β = 1, no heterogeneity in identification;
δA = δB, no heterogeneity in mortality; δA = δB = 0, α = 1,
and r = 0, closed, homogeneous population. The models ex-
amined are listed (Table 2).

Population parameters were estimated using maximum
likelihood methods, and their fits were compared by
Akaike’s Information Criterion (AIC), with the lowest AIC
indicating the preferred model (Burnham and Anderson
2002). Confidence intervals (CIs) for the parameter estimates
were calculated using both likelihood and nonparametric
bootstrap methods with 1000 replicates (see Buckland and
Garthwaite 1991). The size of the entire study population,
NT, was estimated by multiplying the estimate for reliably
marked individuals, NM, by the estimate of the ratio of all
photographs to those showing reliably marked animals, h.
CIs for NT were then estimated from the CI for NM and the
estimated coefficient of variation of h, so that the upper con-
fidence interval (uci) was given by

(1) uci T( )N =

N N h
N N

N
T T

2 M M

M

2

1.96 CV
uci

1.96
+ + −⎧

⎨
⎩

⎫
⎬
⎭

( )
[ ( ) ]

where CV is the coefficient of variation. The lower CI was
calculated similarly.

Goodness-of-fit measures and tests for open-population
mixture models of heterogeneity are not well developed

© 2005 NRC Canada

Whitehead and Wimmer 2575

No. of reliable, Q ≥ 4
identification photographs

No. of reliably marked
animals identified

Year Left side Right side Left side Right side

1988 8 20 4 5
1989 245 203 45 38
1990 315 340 61 62
1993 93 81 16 23
1994 48 48 19 25
1995 5 24 4 12
1996 286 268 49 45
1997 265 218 47 54
1998 386 301 40 37
1999 88 53 25 21
2001 35 36 15 14
2002 50 56 16 16
2003 49 67 12 17

Note: See text (Analyzing photoidentifications in Methods) for descrip-
tion of quality (Q) grading system.

Table 1. Summary of photoidentification data collected in the
Gully, 1988–2003.



(Pledger et al. 2003), and some of the more standard tests
used with nonheterogeneous models (e.g., TEST 3 of
Burnham et al. 1987) are clearly inappropriate. Here we
compare the observed and expected distributions of the
number of years during which individuals were identified.

To examine the performance of the mixture-model estima-
tion procedure, we used parametric bootstraps, constructing
artificial data sets using the identification schedules and rates
of the real data and parameter estimates (see Appendix B),
and then running them through the estimation procedure. One
thousand data sets were constructed using each of the “hetero-
geneity in identifiability” and “heterogeneity in mortality &
identifiability” models, as well as using a model with continu-
ous variability in identifiability among individuals (see Ap-
pendix B). Each data set was tested using several of the
models, with that producing the lowest AIC being noted.

Using Bayes’ theorem, individuals were assigned poste-
rior probabilities to classes A and B (Pledger et al. 2003) by
the “heterogeneity in mortality & identifiability” model us-
ing the left-side photographs. The following characteristics
of individuals were then compared with these posterior prob-
abilities to look for traits of individuals with high and low
identification rates: identification histories within and be-
tween years, age–sex class, prevalence of markings, and mean
group size (with group being defined as whales within five
body lengths of one another and showing coordinated behav-
iour (Gowans et al. 2001); group sizes were recorded when
photographs were taken; only one group size was used for
each individual in each 15 min interval; only those group
size records made with left-side photographs were used).
These analyses used the SOCPROG programs, and modifi-
cations of them, written in MATLAB (see http://myweb.
dal.ca/~hwhitehe/social.htm).

Planning future effort
The measure of effort used was days spent at sea per year.

This varied between 4 and 69 days·year–1. The number of re-
liably marked animals identified using left or right sides dur-
ing the year j (nj) was plotted against effort in that year (fj).
A logistic model with parameter π was fitted through the
data (data for years 2001–2003 were omitted, as significant
effort was spent outside the Gully in these years) using a
generalized linear model. Thus, the expected number of

identifications in year j, E(nj), was related to population size
(NM, estimated in the earlier part of the paper) by

(2) E n
N f

f
j

j

j

( ) =
+
M

1

π
π

Using this relationship, the number of animals identified
during a given year could be estimated given the effort ex-
pended. However, error about this line was found to be
greater than predicted by a binomial model, so in simulating
data, a normal approximation was used:

(3) n
N f

f
d
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f
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j

j
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The dispersion parameter, d, was chosen so that the standard
deviations of the residuals were similar in the real and simu-
lated data. Simulated values of nj were rounded to the near-
est integer and bounded by 0 and NM. We simulated 1000
data sets using the parametric bootstrap method (see above;
Appendix B) over a 20 year period. For each of these data
sets, for five total levels of field effort during the 20 years
(100, 200, 400, and 800 days) and for four patterns of effort
(equal amount of effort every year, every 2 years, every
5 years, and every 10 years), we used the relationship in
eq. 3 to give the number of animals identified in each year
of effort and then used the procedures described in Appen-
dix B to produce identification histories. For each data set,
each level of identification effort, and each pattern of identi-
fication, the simulated data set was run through the full esti-
mation model. The dispersions of estimated trends and
population sizes were taken as an indication of the utility of
the effort scenario.

Results

Model fitting
The results of fitting the population models are summa-

rized (Table 2). While the full model showed the best fit
(lowest AIC) for the right-side photographs, the model with-
out a trend in population size fit best for the left-side photo-
graphs, although in each case the differences between the
AICs of these two models were small (Table 2). For the
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Heterogeneity in: AIC

Model

Closed?
(δA = δB = 0,
α = 1, r = 0)

Trend?
(r ≠ 0)

Identifiability?
(β ≠ 1)

Mortality?
(δA ≠ δB) Left Right

Closed (Schnabel) Yes No No No 980.69 985.53
Mortality No No No No 870.69 882.00
Mortality + trend No Yes No No 871.59 883.99
Heterogeneity in mortality No No No Yes 861.54 872.73
Heterogeneity in mortality + trend No Yes No Yes 862.46 874.21
Heterogeneity in identifiability No No Yes No 839.56 843.56
Heterogeneity in identifiability + trend No Yes Yes No 841.19 845.11
Heterogeneity in mortality & identifiability No No Yes Yes 836.12* 843.38
Full: heterogeneity in mortality & identifiability + trend No Yes Yes Yes 836.45 843.31*

Note: Akaike’s Information Criterion (AIC) is given for the data from the left and right side photographs.
*The lowest AIC indicates the best fit to the data for each side.

Table 2. Summary of population models fitted to Gully photoidentification data.



right-side photographs, the model that only included hetero-
geneity in identifiability also had an AIC close to (within 1.0
of) the minimum, indicating substantial empirical support
(Burnham and Anderson 2002). However, AICs for all mod-
els without heterogeneity in identifiability were all much
larger (>15) than the minima (Table 2), indicating that heter-
ogeneity in identifiability is an important feature of these
data, whereas heterogeneity in mortality and population trends
have marginal significance (see also results of parametric
bootstrap analysis, below).

The distribution of the number of years that each animal
was observed, together with the expected distributions for
the best-fitting model without heterogeneity (the “Mortality”
model (the best of those fitted by Gowans et al. 2000a)), and
the full model with heterogeneity are provided (Table 3).
There are considerably more individuals identified in 1 year
or during 6 or more years and fewer individuals identified in
a total of 2–4 years than expected using models without het-
erogeneity. This pattern, characteristic of heterogeneous data
(Cormack 1985), largely disappears when the model includ-
ing heterogeneity is used (Table 3), and, at least in this fea-
ture, this model fits the data satisfactorily.

Parameter estimates
Parameter estimates for the three best-fitting models, as

well as the homogeneous Mortality model, together with
their estimated CIs, are shown (Table 4). There is consis-
tency both between estimates from photographs from the left
and right sides and between CIs calculated using likelihood
and nonparametric bootstrap methods (as well as from the
parametric bootstrap analysis; see below, Table 5). The pop-
ulation is estimated to consist of about 115 reliably marked
individuals, with a 95% CI of about 95–130. Of the Q ≥ 4
photographs, 68% (standard error, SE = 3%) were of reliably
marked individuals, and the ratio of all photographs to reli-
ably marked photographs was 1.462 (CV = 0.109). By com-
bining this ratio with the population estimates of reliably
marked individuals and CIs from nonparametric bootstrap
analysis (Table 4) for the best-fitting models (as indicated by
the minimum AIC in Table 2) using eq. 1, we calculated to-
tal population estimates and CIs for the Scotian Shelf popu-
lation of northern bottlenose whales. These estimates were
155 animals (95% CI = 114–201 animals) for the left-side

photographs and 171 animals (95% CI = 123–227 animals)
for the right-side photographs. After averaging, we esti-
mated the population to contain about 163 animals (95% CI
= 119–214 animals).

The models that include a trend in population size as well
as heterogeneity in identification rates have very similar fits
(indicated by AICs) to those that do not include trends. For
the left-side photographs, a model without a population trend
has the best fit, and for the right-side photographs a model
with a trend fits best (Table 2). The best estimates of the
trend indicate an increase in population size of about
+2.5%·year–1, but in no case is it statistically significantly
different from zero (Table 4).

The population is indicated as being composed of two
classes of reliably marked individuals: about 10–25 individ-
uals that are regularly identified in the Gully and have low
(0% – ~6.5%·year–1) rates of mortality, emigration, or mark
change; and about 100 individuals that have roughly 75%–
94% lower rate of identification and a higher (~13%·year–1)
rate of mortality, emigration, or mark change. The division
into two classes was made for the convenience of fitting the
population model, and the results are also consistent with a
population containing a continuum of identifiabilities rang-
ing from individuals with high identifiabilities in the Gully
to those only likely to be only occasionally identified there
(Pledger et al. 2003; see parametric bootstrap analysis be-
low).

Validity of analysis
The validity of these results was checked using the para-

metric bootstrap analyses (results summarized in Table 5).
These analyses indicate that using the minimum AIC crite-
rion, the analyses generally but not always (about 80%–85%
of the time) selected the correct input model. Models includ-
ing trends were sometimes selected, even though there was
no trend in the underlying data. Parameter estimates were
close to being unbiased (with the exception of NM and α
when the data were produced by the heterogeneity in
identifiability models, which were both biased downwards
by about 10%). Parametric bootstrap estimates of precision
are very similar to those from the nonparametric bootstrap or
likelihood methods (compare 95% CIs in Table 4 for left-
side data with those from the correct model in Table 5). The
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Left side Right side

Expected under: Expected under:

No. of years
identified Observed Mortality Full Observed Mortality Full

1 81 64.8 75.7 84 68.7 78.9
2 35 45.0 42.5 39 43.9 42.4
3 17 25.0 19 15 25.2 19.7
4 10 14.2 9.1 9 14.8 9.3
5 6 7.0 4.7 5 7.4 4.6
≥6 11 3.9 9 12 4.1 9.1

χ2 — 23.3 2.8 — 26.1 2.7
P — 0.000 0.728 — 0 0.738

Table 3. Observed and expected distribution of numbers of animals identified during different
numbers of years for best model without heterogeneity (Mortality) and full model with heteroge-
neity in mortality and identifiability, together with results of χ2 goodness-of-fit tests.
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mixture model estimation procedure gives reasonable esti-
mates of population size (downward bias of about 10%) and
mortality rate (approximately unbiased) when identifiability
is continuous and not bimodal as assumed by the mixture
models.

Characteristics of animals with high and low
identifiability

Characteristics of reliably marked animals with posterior
probabilities >0.75 of being allocated into either class A
(low identification rate and high mortality rate) or class B
(high identification rate and low mortality rate) are summa-
rized (Table 6). As might be expected (as these were the data
used to form the classes), class A animals were identified in
fewer years (1–5 years) than class B animals (6–10 years).
However, class A animals were also generally identified over
shorter time scales within years. Compared with class A
animals identified the same year, class B animals were iden-
tified on a mean of one additional day and were about twice
as likely to be identified over spans of at least 10 days
within a year. This indicates a greater short-term
identifiability of class B animals. Class B animals were
more likely to possess each of the three types of marks that
persist over periods of years (notches, back indents, and
mottling) and are used to distinguish “reliable” individuals
(Gowans and Whitehead 2001), but for none of the mark
types was the difference in markings between the classes sta-
tistically significant. The majority of class A animals were fe-
males, whereas those in class B were more likely to be
males, and in particular mature males (Table 6). There was
no substantial or statistically significant (at P < 0.05) differ-
ence between mean group sizes of animals allocated to the
two classes (Table 6).

Planning future effort
The relationship between level of effort (days at sea per

year) and number of animals identified is shown (Fig. 1).
The logistic parameter (π in eq. 2) was estimated to be
0.0113, and the dispersion factor (d in eq. 3) was estimated
to be 2.90. The data simulated using eq. 3 appear to have a
similar distribution to the real data (Fig. 1). The results of
the simulation study on the relationship between effort and

the precision of estimated parameters over a 20 year period
are shown (Fig. 2). As expected, greater effort gave greater
precision. More precise estimates were obtained by spread-
ing effort over annual or biannual studies rather than con-
centrating time at sea every 5–10 years. The results suggest
that to obtain a standard error in trend of less than 1%·year–1

after 20 years requires annual studies of about 20 days each
or biannual studies lasting about 40 days.

Discussion

Technical issues
Using much of the same data set that our analysis has

shown to be clearly heterogeneous in identifiability, Gowans
et al. (2000a) failed to detect heterogeneity by plotting the
residual differences between the observed and expected
number of animals with a particular identification history
against the number of years identified (as recommended by
Cormack 1985). This may be explained by a fairly large
number of possible identification histories when there are
many sampling periods; then the scatter among the residuals
of histories with a particular number of periods identified
swamps any bias in the residuals away from zero. Instead,
we recommend comparing the observed and expected distri-
butions of the number of periods identified where a poor fit
to a model without heterogeneity is clearly indicated.

It is generally considered that heterogeneity in capture
rates introduces a downward bias in mark–recapture popula-
tion estimates (Hammond 1986), but that estimates of sur-
vival or mortality are less affected (Pledger et al. 2003). In
the case of the real and simulated data sets considered in this
paper, the estimates of population size using estimation mod-
els without heterogeneity were about 20% lower than those
of the mixture models or the population sizes input into the
simulations. However, the mortality estimates also appeared
biased, upwards by about 30% in the models without hetero-
geneity compared with those that included heterogeneity in
identification or the input mortality in the case of the simu-
lated data sets. These results support the development and
use of mixture models to analyse mark–recapture data that
contain heterogeneity.
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Class A Class B Tests

No. of animals allocated 143 11 —
Mean years identified 1.7 [1; 5] 7.5 [6; 10] —
No. of days identified per year (mean difference from annual mean)* –0.09 [–1.52; 3.45] 0.91 [–0.65; 2.54] K–W: P = 0.003
Proportion of years identified ≥10 days* 0.20 [0; 1] 0.40 [0; 0.8] K–W: P = 0.005
With fin notches (%) 72 91 G: P = 0.132
With back indents (%) 9 27 G: P = 0.099
With mottling (%) 31 36 G: P = 0.739
Mature and subadult males (of sexed animals) (%) 37 (n = 78) 64 (n = 11) G: P = 0.082
Mature males (of all sexed males) (%) 54 (n = 26) 86 (n = 7) G: P = 0.106
Mean group size 4.40 4.68 K–W: P = 0.088

Note: Patterns of identification between and within years, markings, and sex–age class are indicated. Differences between classes in continuous vari-
ables were tested using the Kruskal–Wallis (K–W) test and between categorical variables using likelihood-ratio G tests. Most continuous variables ranges
are given in square brackets.

*Just using years with substantial identification effort (1989, 1990, 1996, 1997, 1998).

Table 6. Characteristics of reliably marked animals with posterior probabilities >0.75 of being allocated into either class A (low identi-
fication rate and high mortality rate) or class B (high identification rate and low mortality rate).



A particular case of concern is the quite common use of
two-sample Petersen mark–recapture estimates. Sometimes a
series of these, comparing identifications in consecutive
study periods, is used to investigate trends in population size
(e.g., Calambokidis and Barlow 2004). These methods are
much simpler to use than the open models considered in this
paper and are therefore attractive. However, heterogeneity in
identification rates will not only cause such population esti-
mates to be biased (downwards), but the degree of bias will
vary with effort. So when such methods were applied to the
Gully data set, especially low population sizes were esti-
mated for year pairs such as 1993–1994: 16 (1993) and 19
(1994) left-side reliable identifications with four in common
gave a Petersen population estimate of 67 reliably marked
individuals. With a population size of 106, 90% of the indi-
viduals in class A, and an identifiability ratio of 0.15, the
equations in Appendix A give expected numbers identified
of 11.1 and 13.5 class A animals in 1993 and 1994, respec-
tively, and 4.9 and 5.5 class B animals in 1993 and 1994, re-
spectively. The expected number identified in both years
(ignoring mortality) is then 2.9 for class A and 1.6 for class
B, giving a total of 4.5, almost exactly as in the real data.
Thus, in populations with heterogeneity in identifiability,
Petersen estimates from small sample sizes can substantially
underestimate the population size, on account of matches
within the sets of more identifiable animals.

In contrast with the poor performance of standard mark–
recapture models on heterogeneous data sets, the parametric
bootstrap simulation indicated that the two-class mixture
models perform quite well on data sets containing continu-
ous variability in identifiability (also noted by Pledger et al.
2003). Thus, a good fit of the two-class model should then
not be taken to indicate literally two classes of animal, but
rather that there is heterogeneity in the data set, and its ex-
tent can be roughly approximated by the standard deviation

in identifiability and (or) mortality of the results of the two-
class model.

Doubts have been expressed that the use of AIC may overfit
mixture models, selecting overly complex models, especially at
the boundaries of parameter space (Pledger et al. 2003). In our
case, the best-fitting models estimated δB = 0, so this was a
concern. In the nonparametric bootstrap analysis, the correct
model was selected using the lowest AIC criterion in 84% of
the runs generated by the heterogeneity in identifiability model
and in 82% of the runs generated by the heterogeneity in
identifiability and mortality model. More complex models were
selected (i.e., overfitting) in 16% and 14% of the runs, respec-
tively, but simpler models (underfitting) occurred in a total of
only 44 of 2000 runs. This indicates that while the minimum
AIC is most likely to choose the most appropriate model, over-
fitting may occur quite frequently.

The models used in this paper all assume that the identifi-
cation rate in each year is the number of identifications in
the year divided by the estimated population size that year
(as in Seber 1982, p. 557 and Whitehead 1990). This makes
the model fitting much more efficient than the standard
method in which separate identification probabilities are es-
timated for each sample (e.g., White and Burnham 1999), as
only one parameter is estimated (NM), but it is not theoreti-
cally valid except in the case where the number of identifica-
tions collected in each sample was fixed beforehand, which
it was not in the Gully. However, the nonparametric boot-
strap analyses, which also make this simplifying assumption,
indicate that making this assumption introduces no serious
bias in parameter estimates or estimates of their precision.

The models that we have used condition on the first iden-
tification of each animal. This assumption simplifies the pro-
gramming, but discards potentially valuable information. In
a mark–recapture study of the survival rates of bowhead
whales (Balaena mysticetus), Zeh et al. (2002) found that es-
timates were substantially improved when first identification
data were used. Adding this to the mixture models that we
employed would be challenging, but potentially rewarding.

As a final point in this discussion of technical issues, we
would like to emphasize the value of examining the estima-
tion procedure using the parametric bootstrap. Methods of
analyzing mark–recapture data using open mixture models
are just beginning development (Pledger et al. 2003), and
there are no general studies of performance. In such a situa-
tion, simulation models can be particularly valuable in sup-
porting the validity of a particular analysis.

Northern bottlenose whales of the Scotian Shelf
This analysis, coupled with the work on the animals out-

side the Gully (Wimmer and Whitehead 2004), goes some
way to filling in the most important gap in our understand-
ing of the population biology of the bottlenose whales that
use the Gully: their relationship to other populations of the
species. The data collected in 2001 and 2002 and analyzed
by Wimmer and Whitehead (2004) showed that there were
concentrations of animals in at least two other canyons on
the edge of the Scotian Shelf, that animals moved between
the different canyons, but that over the 2 year time scale,
mixing was incomplete. Some animals, particularly mature
males, moved frequently and rapidly between the canyons
whereas others, mainly females, showed strong preferences
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Fig. 1. Relationship between number of days spent at sea in a
year and number of reliably marked animals identified in the
Gully from left-side photographs (open circles, �) and right-side
photographs (asterisks, *), together with logistic regression curve
(solid line), and data simulated using logistic regression curve
(solid diamonds, �).



for particular canyons (Wimmer and Whitehead 2005). In-
terpreting the output of the population assessments in this
context, we suggest that the class B animals, with high
identifiability in the Gully and low mortality, consist of many
of these mobile mature males, as well as females for whom
the Gully is their preferred habitat, whereas the class A ani-
mals are principally females whose preferred habitat is out-
side the Gully but who make infrequent and quite brief visits
to the Gully. The characteristics of the class A and class B
animals are consistent with this interpretation. However, the
apparently higher mortality of the class A animals may well
be an artifact. Animals that die during the study, whatever
their pattern of usage of the Gully, will tend to be assigned
to class A because of their shorter identification history, and
animals that use the Gully infrequently may be unidentified
during a large part of the end of the study, incorrectly sug-
gesting mortality. As noted above and by Pledger et al.
(2003) and illustrated by the parametric bootstrap analysis,
the good fit of a model with two classes of identifiability is
also consistent with a continuum of identifiabilities among
members of the population. We think it likely that this is the
case with the Scotian Shelf bottlenose whales and thus that
the proportions of animals in the two classes, their relative
identifiabilities, and mortalities should not be taken literally.

However, the estimates of population size and trend repre-
sent more real traits and are of significance for conservation
issues. The population estimates from the best model that
did not include heterogeneity, the mortality model, of 86 re-
liably marked individuals from left-side photographs and 89
from right-side photographs are very similar to those of
Gowans et al. (2000a): 88 and 84, respectively. This is not
surprising, as the analyses used the same data sets with the
exception of the 2001–2003 photographs that were not avail-
able to Gowans et al. (2000a). However, these estimates are
about 20% lower than those from assessments using models
that include heterogeneity, so that total population estimates
(after extrapolation to include the unreliably marked individ-

uals) of 156 and 171 are about 30 animals higher than those
from the homogeneous models. This change is entirely due
to the more sophisticated estimation procedure, which better
accounts for animals that make only occasional use of the
Gully. From the arguments of the previous paragraph, the
extra animals can be thought of as those whose primary hab-
itat is outside the Gully and rarely visit it. Thus, the new
higher estimates are a better reflection of the entire Scotian
Shelf population, including animals that are quite resident in
the Gully as well as occasional visitors, than previous
attempts, although animals that never enter the Gully will
still be omitted.

Although the analysis of the right-side photographs showed
a marginal preference for a model including a positive trend
in population size, the trend was not significantly different
from zero, and the parametric bootstrap analysis showed that
models including a trend are frequently selected by the mini-
mum AIC criterion even when the population from which
the data were collected contains no trend. Thus, the analyses
do not support a trend in the Scotian Shelf population size.

Planning future effort
The efficiency of future effort scenarios in detecting trends

and estimating population size are underestimated here for at
least two reasons. First, we already have 15 years of data,
which were not accounted for in the simulations and will
form a baseline for continuing work. Second, there is now
information on the habitat of the animals outside the Gully.
We know that animals can be found in Shortland and Haldi-
mand canyons, and if photographs are taken in these can-
yons as well as in the Gully (as they were in 2001–2002),
this should allow a more complete coverage of the popula-
tion. With the population more evenly photographed, there
will be less heterogeneity in the data set, and the result
should be relatively more precise estimates of the remaining
population parameters, especially the population size and its
temporal trend.
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Fig. 2. The relationship between levels (x axis) and patterns of effort and the precision (indicated by standard error, SE) of estimated
(a) trend and (b) population size from simulation study over a 20 year period. Line types give years between samples: solid line, 1;
broken line, 2; dot-dashed line, 5; dotted line, 10.
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Appendix A. Population estimation models.

There are J samples at times t1,…,tJ, and on the jth sample
nj individuals are identified. Let Nj be the population size at
the jth sample. We assume that the population consists of
two classes, A and B, with population sizes αNj and (1 –
α)Nj during the jth sample. The classes have different identi-
fication rates and mortalities.

If the population is growing at a rate r per year, and NM is
the population size at the midpoint of the sampling, 0.5(tJ +
t1), then

(A1) N Nj
r t t tj J= − +

M
0.5(e 1[ )]

The estimated identification rate for the whole population in
the jth sample is

(A2) p n Nj j j= /

To represent differential identification rates for members
of the two classes, pj(A) and pj(B), we use a logit link func-
tion (as in Pledger et al. 2003):
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Equations A3 and A4 can be rewritten as
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(A5) pj
j

( )A
1

1
=

+ λ

(A6) pj
j

( )B
1

1
=

+ β λ

where β = e–ν and λ µ
j

j= −e . If there are very few identifica-
tions, then λ j is large, so pj(A)/pj(B) ≈ β. Thus, β represents
the ratio of identifiabilities of the members of the two
classes. Now

(A7) p p pj j j= + −α α( ) ( ) ( )A 1 B

Substituting expressions A2, A5, and A6 in eq. A7 gives

(A8) n Nj j
j j
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1
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Solving for λ j in eq. A8 (using the quadratic formula) gives

(A9) λ
β

βj
j j j j
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=
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where

(A10) b n Nj j= + + −( / )( ) –1 1β βα α

Thus pj(A) and pj(B) can be expressed as functions of α, β,
and nj /Nj. These can be used to calculate the probability that
a member of class A identified in sample j is next identified
in sample k:

(A11) q p pjk
t t

k x
x j x k

k j( ) ( ) [ ( )]( )

:

A e A 1 AA= −− −
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where δA is the mortality rate of class A. The probability
that a member of class A identified in sample j and not iden-
tified again is
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We can write similar expressions for class B by substituting B for A in eqs. A11 and A12.
Then the log-likelihood that an individual i has an identification history ti,1, ti,2,…,ti,1, conditioning on its first identification

(ti,1) is

(A13) L t t t qi i i I
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The log-likelihood of the data set is then
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The population parameters NM, r, α, β, δA, and δB are then chosen to maximize expression A14 using the Nelder–Mead Sim-
plex method.

Various constraints on the parameters permit simplifications of this full model: r = 0: stable population size, no trend; α =
1: one class of individual, no heterogeneity; β = 1: no heterogeneity in identification rates; δA = δB: no heterogeneity in mor-
tality; δA = δB = 0, α = 1: no mortality or heterogeneity, closed Schnabel model.

Using Bayes’ theorem, it is possible to provide a posterior allocation of the individuals into the two classes, A and B
(Pledger et al. 2003). The probability that individual i with catch history ti,1, ti,2,…, ti,1 was a member of class A is
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The probability that it was a member of class B is then 1 – Pr(A| ti,1, ti,2,…,ti,1).

Appendix B. Simulated data sets for
parametric bootstraps.

To construct simulated data sets using the “heterogeneity
in identifiability” model, we took the parameter estimates of
NM, δ, β, and α for the left-side identifications using this
model from Table 4. NM individuals formed the population
at the sampling period 1. Individuals had a probability
e− −+δ( )t tj j1 of surviving from the jth to the (j + 1)th sampling
period. Those dying were replaced by new individuals. All

individuals in the population had a probability α of
belonging to class A and 1 – α of belonging to class B. The
probability that an individual in the population in the jth
sample was identified during that sample was given by
eqs. A5–A10. This produced a simulated set of identification
histories that could be input into the parameter estimation
routines, as described in Appendix A.

To construct simulated data sets using the “heterogeneity
in mortality & identifiability” model, we gave the members
of the two classes different probabilities of survival between
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sampling periods (calculated using estimates of δA and δB).
Dead individuals were replaced by individuals from their
own class, thus maintaining the relative contributions of
each class to the population.

Simulated data sets with continuous rather than bimodal
distributions of identifiability were constructed by giving indi-
vidual i an identifiability determined by yi = 1 – (1 – γ) u,
where u is a uniform 0–1 random variable and γ (= 0.01) was
chosen so that the variance in identification rates was similar
to that in the bimodal case with α = 0.76 and β = 0.11 (as es-
timated using the left-side identifications and the “heterogene-
ity in identifiability” model; Table 4). The distributions of
identifiability in this case and that of the bimodal model are
compared (Fig. B1). With continuous identifiability, eqs. A5 –
A10 could not be used to estimate identification rates for each
sampling period. However, generalizing eq. A8, the overall
identification rate for sampling period j is given by

(B1) n N
y

Nj j
i ji

j/ /=
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ 1

1 λ

For each sampling period j, λ j was calculated by solving
eq. B1 (numerically using the fzero function of MATLAB,
The MathWorks Inc., Natick, Massachusetts), and so the
probability of identification for individual i in sampling pe-

riod j was given by 1/(1 + yiλ j ). This allowed the construc-
tion of simulated data sets, as in the cases described above.
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Fig. B1. Distributions of identifiability with the bimodal model
(Class A and Class B; solid lines) and with continuous
identifiability (dashed lines).


