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Summary

1. In the analysis of animal social networks, a common challenge has been distinguishing affiliations – active

preferences of pairs of individuals to interact or associate with one another – from other, structural, causes of

association or interaction. Such structural factors can include patterns of use of the habitat in time and space, gre-

gariousness and differential association rates among age/sex classes.

2. In an approach with similarities to the multiple regression quadratic assignment procedures test, we suggest

calculating generalized affiliation indices as the residuals from a regression of themeasures of association or inter-

action on structural predictor variables, such as gregariousness and spatiotemporal overlap. If the original data

are association indices or counts of interactions, then generalized linear models with binomial or Poisson error

structures, respectively, can be used in place of linear regression. Anscombe or deviance residuals can be used to

assess the significance of particular affiliation indices.

3. Generalized affiliation indices can be used as the weights of links in a social network representation. They can

then be portrayed in network diagrams or cluster diagrams and used to calculate network statistics, to delineate

communities bymaximizingmodularity and to test for overall affiliation using data-stream permutation tests.

4. We evaluate the effectiveness of such generalized affiliation indices using simulated and real association data,

finding that the method removes much of the effect of structural variables on association patterns, revealing real

affiliations.While the approach is very promising, it is limited by the extent to which the input predictor variables

represent important structural factors.

Key-words: association, interaction, multiple regression quadratic assignment procedures, permu-

tation test, regression, residuals, social structure

Introduction

Among the potential goals of social network analysis, perhaps

most fundamental is the description and investigation of pre-

ferred and avoided dyadic relationships, what we will call affili-

ations. A frequent objective of social network analysis has

been testing the null hypothesis that there are no such affilia-

tions in the study population, and, if this is rejected, identifying

dyads with preferred or avoided relationships (Bejder, Fletcher

&Br€ager 1998; Croft et al. 2011).

Many, perhaps most, studies of the social networks of non-

humans are built upon matrices of association indices, esti-

mates of the proportion of time that pairs of individuals are

associated (Whitehead 2008). In this approach, association

should be defined such that it is meaningful to the animals –
how they interact and/or communicate – but operationally

association is usually based upon spatial, temporal and/or

behavioural metrics (Whitehead 2008). Using this approach,

pairs of individuals may be delineated as associated (i) if they

are communicating/interacting and making active decisions to

associate with one another, (ii) if they happen to be in the same

place at the same time and so communicate/interact, or (iii) if

they happen to be in the same place at the same time and are

not communicating or interacting. If interest is in disease trans-

mission over the social network then all three of these forms of

association are important. Forms 1) and 2), but not 3), allow

for the transmission of cultural information transmitted

through interactions or communication. However, if we are

interested in actively maintained dyadic relationships, affilia-

tion, only form 1) is relevant. In addition to true affiliation, fac-

tors that might affect association include spatial overlap

[animals using the same parts of the population range associate

more (e.g. Shizuka et al. 2014)], temporal overlap [animals

using the study area at the same time are more likely to associ-

ate (e.g. Cantor et al. 2012)], gregariousness [animals that pref-

erentially are found in large groups are more likely to associate

with one another (Godde et al. 2013)] and gender (there may

be preferential associations with the same or the opposite sex).

We shall refer collectively to such sources of association, which

potentially mask the existence and strength of true affiliations,

as structural variables.

Sometimes it is not clear whether a factor should be consid-

ered a structural factor predicting association or an element of

affiliation. For instance, kinship could be deemed a structural
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factor if there is a preference to associate with kin, but kinship

recognition is not linked to individual identification. If, on the

other hand, kinship is perceived by the animals at an individual

level (‘One of the reasons I like X is because she is kin’), so

affecting affiliation rather than association directly, then it

might not be considered structural.

Disentangling true affiliations from other causes of associa-

tion has led to the construction of structured permutation tests

(Bejder, Fletcher & Br€ager 1998; Whitehead 1999; Whitehead,

Bejder & Ottensmeyer 2005; Croft et al. 2011). However, such

tests have limitations and challenges. They only give a perspec-

tive on the null hypothesis that there are no affiliations, or, in

the case of a dyadic test (Bejder, Fletcher & Br€ager 1998) that

two animals are not affiliates. Furthermore, as more structural

factors thatmight cause association are accounted for, the tests

become increasingly unwieldy. Additionally, network dia-

grams and network statistics include the non-affiliative causes

of association, and so will be misleading if the primary goal is

to study patterns of affiliation.

An alternative perspective pioneered by Godde et al. (2013)

in the case of gregariousness is to correct the association index

for the structural factor and then carry out additional analyses

– tests, diagrams and network statistics – on this new index.

Here we extend this approach to include multiple structural

factors, using a method closely allied with MRQAP (multiple

regression quadratic assignment procedures).

Multiple regression quadratic assignment procedures are an

extension of the Mantel (1967) test in which the non-diagonal

elements of two square matrices both indexed by the same

objects (usually individuals in social network analysis) for both

rows and columns are tested for a linear relationship. So we

might test whether there is an overall correlation between asso-

ciation indices of dyads and their genetic relatedness. Because

of non-independence caused by the structure of the data, stan-

dard tests of correlation coefficients are invalid, but permuta-

tions of the object labels on one of the matrices allow a null

hypothesis of no relationship to be tested.MRQAP extend this

approach to situations in which the relationship between one

dependent variable – typically an association index in social

network analyses of animals – and an independent variable –
such as kinship – is examined while controlling for other inde-

pendent variables – such as range overlap or gender similarity.

Because of potential collinearity among the independent vari-

ables, this is not as straightforward as in the case of the bivari-

ate Mantel test. However, there are effective permutation

methods for MRQAP tests (Dekker, Krackhardt & Snijders

2007).

Here we propose that the residuals following a multiple

regression of the association index on various structural vari-

ables using generalized linear models, be used as generalized

indices of affiliation among pairs of individuals. We consider

possible structural variables that might be included as predic-

tors of association, how to measure the significance of struc-

tural variables, and, having removed the structural factors,

how to test for the presence of affiliation both at the dyadic

level and globally. We illustrate the method using simulated

and real data.

Methods

CALCULATING GENERALIZED AFFIL IAT ION INDICES

We start with a square matrix representing associations or interactions

between individuals. This will often be a matrix of association indices,

such as the simple ratio index (Ginsberg & Young 1992), which esti-

mates the proportion of timemembers of a dyads are associated:

yðsimple ratioÞij ¼
No. sampling periods i and j associated

No. sampling periods i or jor both observed
;

eqn 1

where yij is the simple ratio association index between individuals i and

j, given definitions of ‘association’ (e.g. seen within 3 body lengths of

one another) and ‘sampling period’ (e.g. hour). Also frequently used is

the half-weight index in which the denominator of the simple ratio

index is replaced by half the sum of the sampling periods in which each

individual was observed. However, the matrix could list counts of, say,

touches between individuals, and it could be asymmetric.

If the non-diagonal elements of the associationmatrix are listed in an

n-element vector Y (if asymmetric all non-diagonal values are entered

and n is twice the number of dyads; if symmetric only the upper or

lower triangle is needed and n is the number of dyads), and the corre-

sponding elements of v structural predictor variables for each dyad are

given in the n-by-vmatrixX, the generalized linearmodel is

fðYÞ ¼ aXþ E; eqn 2

where f is a link function, a is a vector of the regression coefficients and

E is an n-element vector of residuals. Following the regression,E is then

recast as a square matrix in which the ij element gives the generalized

affiliation index, eij, between individuals i and j. A high positive value of

eij suggests affiliation – that is that the dyads are more associated than

expected given the structural predictor variables – and a negative value

indicates avoidance.

If the elements of Y are simple counts of interactions – as may be

appropriate with small populations when all interactions can be

observed – then a Poisson generalized linear model, with a log link

function can be used. For an association index (e.g. eqn 1) the numera-

tor and denominator of the index can, with the assumption of indepen-

dence, be considered to be from the binomial distribution. Hence, we

can use a binomial version of the generalized linear model and a logit

link function, with the vectorY in eqn 2 becoming a n-by-2 matrix giv-

ing the numerator and denominator of each association index. This for-

mulation is useful in that it corrects for variable amounts of effort

directed towards different dyads.

If using a linear model, then the residuals from the regression model

can be used straight as affiliation indices. When using a binomial

model, they should be divided by the denominator of the original asso-

ciation index (as in the denominator of eqn 1). With a Poisson model,

the straight residuals seem towork reasonably (see Results).

We can transform the residuals, for instance into Anscombe residuals

or deviance residuals (Pierce & Schafer 1986), which should be distrib-

uted as the standard normal distribution. These indicate the statistical

significance of particularly large positive or negative affiliations. In our

evaluations of real and simulated data (see below), we found that Ans-

combe and deviance residuals were very similar to one another.

STRUCTURAL VARIABLES AND THEIR SIGNIF ICANCE

Structural variables may be continuous, ordinal, categorical or binary.

Here are some thatmight be employed:
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Range overlap

Concurrent use of space is necessary for association or interaction.

Thus, range overlap (within the study area) will often be a structural

variable of concern. Utilization distributions describe how animals use

habitat, the probability that they are in a particular place, which can be

estimated from real locational data in a variety of ways. Getz et al.

(2007) recommend the local convex hull nonparametric kernel method,

and its variants, as being superior to other current techniques. We are

interested in the extent to which the utilization distributions of different

individuals overlap, for which there are several potential statistics,

including the utilization distribution overlap index and Bhattachar-

yya’s affinity (Fieberg & Kochanny 2005). These could be appropriate

measures of range overlap.

Temporal overlap

Animals may move into and out of the study area where association is

observed and can only be observed associating when they are both

inside it. Short time-scale temporal overlap, that is at a scale similar to

the sampling period being used,might be considered an element of affil-

iation – animals choosing, or not, to be together. Longer time-scale

emigration/immigration, or birth/death, is perhapsmore of a structural

factor affecting association. A suitablemeasuremight be an association

index, as in eqn 1, but using a long sampling period, say a month or

year, and defining association broadly as both individuals identified,

not necessarily associated, in that sampling period. This gives an esti-

mate of the proportion of time that two individuals were both in the

study area during the research. In some cases, such as when data are

collected non-continuously in several study locations that are small rel-

ative to the ranging patterns of the animals, spatial and temporal over-

lap might be covered by one predictor variable, similar to the temporal

predictor just proposed.

Gregariousness

Godde et al. (2013) correct standard association indices for gregarious-

ness using the expected values of the association index for a pair, given

the estimated gregariousness of each.We could use this as ameasure of

mutual gregariousness and a structural variable in the estimation of

affiliation:

xðgregariousnessÞij ¼
P

k yik �
P

k yjkP
k

P
l ykl

; eqn 3

where yij is the association index between individuals i and j, and ykk is

set to zero for all k. As we are supposing that the association indices

may depend on structural factors, including gregariousness itself, this

formulation is somewhat circular: a high value of an association index

between two individuals increases their joint gregariousness. To remove

this effect, we propose removing each dyadic association index when

calculating the joint gregariousness of that particular dyad:

xðgregariousnessÞij ¼ log
X
k6¼i;j

yik �
X
k6¼i;j

yik

 !
: eqn 4

Gender/class similarity

The simplest version of a gender similarity structural variable is as fol-

lows: x(gender)ij = 1 if i and j are the same gender; x(gender)ij = 0 if of

different gender. This implies that in gender relationships same and dif-

ferent are the primary factors. Alternatively a categorical variable, with

three values, [x(gender)ij = MM, MF, or FF] can be defined giving

different possible association rates for males with males and females

with females, as well as between the sexes. If the population is delin-

eated into other classes that might affect association, for instance age

classes, reproductive status or classes based uponmitochondrial haplo-

types or characteristic behaviour, then structural variables can be

defined in a similar manner.

Social unit membership

If animals are allocated to social units, we can use these units as classes

to define a structural variable. One possibility is a simple binary same/

different unit categorization. A more nuanced categorization, using up

more degrees of freedom, would give distinctive values for associations

within each unit and betweenmembers of each pair of units.

Kinship

As noted in the introduction, it may sometimes be appropriate to con-

sider the kinship between two animals as a structural variable influenc-

ing, likely positively, their probability of association. Kinship, as

measured by relatedness, can be calculated if the genealogy of the pop-

ulation is known, but will more often be estimated using molecular

genetic markers such as microsatellites (van de Casteele, Galbusera &

Mattysen 2001). However, often kinship may most appropriately be

considered as a factor influencing affiliation itself and therefore one

would not want to factor it out before calculating affiliation, rather see-

ing how kinship relates to the output affiliations.

The relative significance of the different structural variables can be

assessed in several ways. For instance, we can present standardized par-

tial correlation coefficients of each predictor variable with the associa-

tion index, controlling for the other predictor variables. Being

dimensionless, these give easily interpretable measures of the relative

significance of the predictors. We can also carry out MRQAP tests for

each predictor, controlling for the others. These can be the basis of step-

wise procedures aimed at delineating an efficient subset of structural

factors that affect association.

USING AFFIL IATION INDICES

With a few exceptions, generalized affiliation indices can be analysed

much as association indices. We can display them as a printed matrix,

as a network diagram, or using multidimensional scaling or hierarchi-

cal cluster analysis (Whitehead 2008). We can examine the distribution

of the generalized affiliation indices or network statistics derived from

them, such as strength (gregariousness), connectedness and affinity

(Croft, James & Krause 2008; Wey et al. 2008). We can see how these

measures differ between classes of animal, such as the sexes, and how

they may correlate with one another. We can look for fairly closed

communities of affiliated individuals by techniques such as maximizing

modularity (Newman 2006).We can use data-stream permutation tests

to test null hypotheses that there is no real affiliation in the population

(Bejder, Fletcher & Br€ager 1998). For these tests, first the gregarious-

ness values (if being used as a predictor), then the generalized affiliation

indices and finally the test statistic (e.g. the standard deviation of the

indices) are recalculated after each permutation of the data. The value

of the test statistic on the real data is comparedwith that for the permu-

tations, giving aP-value.

Unlike association indices or counts of interaction, generalized affili-

ation indices can be negative. Thus, they cannot be used as input for

principal coordinates analysis; further, some standard test statistics of
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permutation tests, such as the coefficient of variation of the indices, are

inappropriate. (The standard deviation of the indices is an appropriate

test statistic for both association and affiliation indices.) Negative gen-

eralized affiliation indices are also an issue when using network dia-

grams to illustrate the generalized affiliation indices. They can be

omitted or perhaps illustrated in a different way (different colour or line

style) from the positive indices.

EVALUATING GENERALIZED AFFIL IAT ION INDICES

Simulated data

We used simulated data to investigate to what extent the generalized

affiliation indices produced by the method described above mirror

input affiliations and to examine whether the significance of the predic-

tor variables suggested by the proposed method matched their input

significance.

We constructed simulated data sets with the following characteris-

tics: m individuals, each with a 50% probability of being male or

female, si = 0 or 1, respectively, a gregariousness, gi, drawn from the

uniform random distribution on [1 G]. There are n = m(m–1) dyads.

Each dyad has a probability q of being designated a pair of ‘affiliates’:

fij = 1 if i and j affiliates, fij = 0 otherwise. Each pair of individuals

may, ormay not, associate during any ofT sampling periods.

At the beginning of the simulation (sampling period 0), individuals

have a 50% probability of being inside the study area. At the start of

each sampling period, individuals outside the study area have probabil-

ity q of entering it, and those inside the study area probability of q of

leaving, giving sequences: bit = 1 if individual i was in the study area in

sampling period t, bit = 0 if not.

Then, for individuals i and j in sampling period t,we define a propen-

sity for association:

uijt ¼ gi�gj�bit�bjt�ð1þ r�ðsi ¼¼ sjÞÞ�ð1þ /�fijÞ: eqn 5

This is dependent on the gregariousness of each individual (gi, gj),

requires both to be in the study area during the sampling period (bit =

bjt=1) and is increased if both are of the same sex (by a factor of 1 + r),
or both are affiliates (by a factor of 1 + /). The probability that indi-

viduals i and j are associated in sampling period t is proportional to the

propensity for association, uijt, with the constant of proportionality

adjusted so that the maximum probability of association is amax. This

procedure then gives a record of associated/not associated for each pair

of individuals in each sampling period, from which we calculated asso-

ciation indices as in eqn 1.

Assuming that we knew the sex of each individual, but not their

actual gregariousness, actual presence in the study area, or who were

affiliates with whom, we estimated affiliation indices as described above

using the following predictors: sex similarity, estimated dyadic gregari-

ousness (eqn 4), an estimate of temporal overlap (a simple ratio index

using sets of five consecutive sampling periods as the new long sampling

period and defining association as both animals identified in a long

sampling period) and a nuisance variable with uniform random num-

bers from the [0 1] interval chosen for each dyad with no relationship to

association. We used the linear model on the association indices, the

binomial model on the numerator and denominator of the association

indices and the Poisson model just on the numerator of the association

indices.

At the end of each run, we retrieved the information on which pairs

were affiliates and compared the association indices and affiliation indi-

ces of affiliated pairs and non-affiliated pairs. The success of an index in

identifying affiliates was indicated by Cohen’s d, the difference between

the mean of the index for affiliated pairs and that for non-affiliated

pairs divided by the pooled standard deviation.

For each data set, we also calculated the partial correlation coeffi-

cient between the association indices and each of the predictor vari-

ables, controlling for the other predictor variables. These partial

correlation coefficients were also the test statistic for MRQAP double

semi-partialling (Dekker, Krackhardt & Snijders 2007) tests for each

predictor (null hypothesis that the predictor was linearly unrelated to

association, given the other predictors), with 1000 replicates.

For each data set, we tested for preferred/avoided associations using

the ‘permute associations within sampling periods’ methodology in

which pairs of associates within sampling periods are flipped maintain-

ing the number of associates of each individual as well as the total num-

ber of associations within each sampling period (Whitehead, Bejder &

Ottensmeyer 2005).We tested both the association indices and general-

ized affiliation indices using this method (calculating generalized affilia-

tion indices anew for each random data set), with 1000 permutations

and each permutation being made up of 1000 flips. The null hypothesis

of no preferred association/affiliation was rejected if the standard devi-

ation of the real indices was greater than at least 950 of the standard

deviations of the sets of random indices.

Initial runs were made using a ‘standard’ set of parameters: n = 20,

G = 2, T = 50, q = 0�09, q = 0�1, r = 0�9, / = 2�0, amax = 0�6. In sub-

sequent sets of runs, we changed the number of individuals (n = 10,

40), number of sampling periods (T = 25, 100) andmean rate of associ-

ation (amax = 0�3, 0�85) to check the robustness of the results for smal-

ler, larger or differently sampled data sets. Then, we effectively

removed any preference for affiliates (/ = 0�0), gregariousness differ-
ences (G = 1) and sex preferences (r = 0�0). In the final set of runs, we

increased the rates of movement into and out of the study area

(q = 0�4) effectively making our measure of temporal overlap (calcu-

lated over five consecutive sampling periods) no longer relevant. There

were 100 runs with each set of parameters.

Bottlenosewhale data

We used a data set on the social relationships of northern bottlenose

whales (Hyperoodon ampullatus) based upon photoidentifications col-

lected in three submarine canyons on the edge of the Scotian Shelf

between 1988 and 2003, an extended version of the data set analysed by

Gowans, Whitehead &Hooker (2001). We used only those animals: (i)

with markings considered ‘reliable’ allowing consistent matching

between years, (ii) who could be allocated to age-sex classes as either

mature males, subadult males or females based upon photographs of

their foreheads; and (iii) who were identified on 15 or more different

days (see Gowans, Whitehead &Hooker 2001). There were 16 animals

in this data set. Sampling periods were days, and dyads were considered

associated on a day if they were identified within 1 hour of each other.

We constructed half-weight indices between individuals using these

data.We also calculated several predictormeasures:

‘Gregariousness’: as in eqn 4.

‘Age-Sex’: 1 if pair of same age-sex class; 0 otherwise.

‘Temporal overlap’: Proportion of years in which at least one of the

individuals in the dyadwas identified that bothwere identified.

‘Spatial overlap’: Proportion of those years in which both were

identified, that bothwere identified in the same canyon.

We examined the significance of these predictor variables using

MRQAP tests and partial correlation coefficients, sequentially

removed predictors with non-significant (P > 0�10) MRQAP tests and

then calculated generalized affiliation indices using a binomial model.
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We compared association and generalized affiliation indices for these

whales using network diagrams, network statistics, as well as tests for

age-sex class effects (Mantel tests) and overall affiliation (data-stream

permutations).

Results

SIMULATED DATA

Results of the runs with simulated data are given in Table S1.

For the first run with the standard set of parameters, net-

work diagrams generated using the original simple ratio associ-

ation indices as well as the generalized affiliation indices

(binomial method) are shown in Fig. 1. When compared with

the association indices, affiliation indices show true affiliations

more prominently (red links are generally wider, and so less

often dashed, on the lower, affiliation, diagram), are less

affected by gregariousness (number of links less related to size

of node in lower diagram) and do not segregate genders (com-

pare lower and upper diagrams). In Fig. 2, the distributions of

association indices and affiliation indices (binomial, linear and

Poisson) are compared for true affiliates and other dyads using

box plots. The distinction between affiliated and non-affiliated

dyads is much stronger – the box plots are less overlapped – for
all three types of affiliation index than for association indices.

This difference was quantified using Cohen’s d, with d = 1�57

for association indices and d = 2�30, 2�36 and 2�68 for bino-

mial, linear and Poisson affiliation indices, respectively.

In all runs with simulated data, except those where affilia-

tions were effectively disabled (/ = 0), the affiliation indices

better discriminated between affiliates and non-affiliates than

association indices, with a mean increase in Cohen’s d of 0�70,
0�62 and 0�98 for binomial, linear and Poisson runs, respec-

tively. When affiliations were effectively disabled (/ = 0�0), the
distinctions were virtually erased, with near zero values of Co-

hen’s d for both associations and affiliations. The affiliation

indices performed better with more sampling periods and

worse with a smaller population size, fewer sampling periods

and fewer associations.

The partial correlation coefficients and MRQAP tests

clearly showed the irrelevance of the nuisance variable with

near-zero partial correlation coefficients, and the null hypothe-

sis of no relationship to association rejected in only about 5%

of the runs, as expected. The analysis also clearly indicated the

significance of the gender predictor variable, with strong par-

tial correlation coefficients and universal rejection of the null

hypothesis except when the gender similarity effect was

removed (r = 0�0), when the partial correlation coefficient fell

to nearly zero and the null hypothesis was rejected at the

expected rate. The results were similar with the temporal pre-

dictor, although the partial correlation coefficient and null

hypothesis rejection rate were not entirely reduced to zero by

decoupling the migration rate from the length of the longer

sampling periods. The most obvious discrepancy was for gre-

gariousness which was signalled as a useful predictor of associ-

ation in many runs, including some of those in which no

gregariousness effect was input (G = 1).

The permutation tests for preferred/avoided associations

almost always rejected the null hypothesis of no preferred/

avoided associations for both the simple ratio indices and the

generalized affiliation indices. There were some failures to

reject the null hypothesis with a population of only 10 individ-

uals and with fewer associations (less dense network) for the

generalized affiliation indices. The primary distinction though

is for the runs without built in affiliations (/ = 0): the null

hypothesis was generally rejected when testing the simple ratio

index, but not when testing the generalized affiliation index,

which had mean P-values of about 0�3. This shows that the
generalized affiliation index had effectively removed the non-

affiliation sources of association, exposing cases when there

was true affiliation among individuals. Thus, the generalized

affiliation index fulfilled its mandate.

BOTTLENOSE WHALE DATA

Multiple regression quadratic assignment procedures tests

indicated that age-sex class and temporal overlap were useful

in explaining patterns of association in the northern bottlenose

whales (Table 1), with gregariousness and spatial overlap

being removed by the stepwise procedure. Using age-sex class

and temporal overlap as predictors, we calculated generalized

affiliation indices. Network diagrams of the association indices

and generalized affiliation indices are compared in Fig. 3. The

Fig. 1. Network diagrams using one run of simulated data (for param-

eters, see main text), using association indices (above) and generalized

affiliation indices (below). Arrangements are optimized using the

default spring-embedding algorithm of NetDraw. The colour of each

node indicates its gender, size its gregariousness. Only links represent-

ing indices in the upper 25% percentile are shown, and link width is

proportional to index weight. Input dyadic affiliations are shown by

red links.When the standardized (mean 0; SD 1) association indices are

greater than the standardized generalized affiliation indices for dyadic

affiliations, the red links are dotted in the lower diagram, and when the

standardized generalized affiliation indices are larger than the standard-

ized association indices, the red links are dotted in the upper diagram.
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primary distinction is that the network as portrayed by half-

weight indices is muchmore prominently structured by age-sex

class than is the network of generalized affiliation indices. The

mature males appear to form a clique with their associations.

The network of generalized affiliation indices does not obvi-

ously show this characteristic, as might be expected with age-

sex class used as a structural factor in the calculation of the

generalized affiliation indices. However, some strong relation-

ships, for instance between mature males #1 and #3, are main-

tained with the transformation into generalized affiliation

indices.

We also compared several characteristics of the association

indices to those of the generalized affiliation indices (Table 2).

In most respects, the pattern of generalized affiliation indices

appears less structured than that of the half-weight association

indices: there was less modularity, lower correlations between

strength (i.e. gregariousness for association indices) and other

nodal networkmetrics, no support for age-sex class structuring

associations (versus a strong matrix correlation and significant

Mantel test for the same comparison with associations), and a

permutation test did not reject the null hypothesis of no pre-

ferred or avoided affiliations (versus a significant result for

associations). However, when the test just included the seven

mature males, the test was marginally significant for general-

ized affiliation indices and the original half-weight association

indices (Table 2). (The structure of the data was not suitable

for a similar test of the seven females.) Large deviance residuals

(greater than 2�5) indicated two strongly affiliated dyads:

mature males #1 and #3 (2�81); subadult male #267 and female

#102 (3�82).While the relationship between #1 and #3 is clearly
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Fig. 2. Box plots comparing the distribution of association and (binomial, linear, Poisson) generalized affiliation indices for true affiliates and non-

affiliates using the same simulated data that produced the network diagrams in Fig. 1.

Table 1. Efficiency of predictor variables in explaining association

indices among bottlenosewhales, as shownby partial correlation coeffi-

cients and results of multiple regression quadratic assignment proce-

dures (MRQAP) tests (1000 replications)

Predictor Partial correlation MRQAPP-value

Gregariousness 0�068 0�300
Age-sex 0�292 0�001
Temporal overlap 0�295 0�002
Spatial overlap 0�117 0�109

Fig. 3. Network diagrams for 16 northern bottlenose whales using

association indices (above) and generalized affiliation indices (below).

The colour of each node indicates its age-sex class (pink females; dark

blue mature males; light blue subadult males), the size of each node its

gregariousness. Other attributes as in Fig. 1.
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strong in the original association data (Fig. 3) that between

#267 and #102 had not been previously recognized as signifi-

cant. There were no deviance residuals less than -2�5 so little

evidence for avoidance.

Discussion

Disinterring true affiliations from association or interaction

data has been a major challenge in the study of animal

social networks (Bejder, Fletcher & Br€ager 1998; Croft

et al. 2011). In this paper, we build on the ideas of Godde

et al. (2013) by removing structural predictors in the calcu-

lation of new indices that reflect true affiliations (Fig. 4).

The results of the evaluations of generalized affiliation indi-

ces with both simulated and real data illustrate how the

method can remove structural determinants of association,

leaving what appear to be fundamental affiliations that can

be analysed using a wide range of techniques.

It is impossible to cover all potential scenarios with simula-

tions, but from the consistency of the results within the range

that we covered, and the basic logic of the approach, we expect

that within much or all of the range of scenarios used to study

animal societies generalized affiliation indices will provide

insight. Perhaps the most significant omission in our simula-

tions is ‘gambit of the group’ data, when associations are

defined by group membership (Whitehead 2008) and thus

have extra dependencies. Evaluating these scenarios is a next

step.

Our methodology identifies affiliation using the residuals

after removing structural predictors of association. This defini-

tion-by-elimination is philosophically unsatisfactory, but

avoiding it would need a completely different approach. Practi-

cally, it leads to two issues. The first is whether particular fac-

tors should be included as structural predictors. Kinship could

drive association directly or through affiliation. Large-scale

temporal use of the study area will usually be a structural fac-

tor, whereas small-scale temporal patterns may be better con-

sidered elements of affiliation. In cases of uncertainty, we

suggest calculating the generalized affiliation indices with and

without the ambiguous factor.

The second issue deriving from our negative connotation of

affiliation constitutes the primary limitation of the technique: it

can only be only as effective at removing structural determi-

nants of association as these determinants are represented by

the predictor variables entered into the model. Structural non-

affiliative factors that affect association but are not represented

by the predictor variables will remain. Our simulations sug-

gested that even imperfect predictor variables (such as the tem-

poral overlap predictor used for our simulated data sets) can

do a good job of exposing true affiliations. Predictors can also

fill in for one another and mask each other. For instance, the

gregariousness predictor includes how available individuals

are to observation. This, we think, is why gregariousness was

sometimes found to be a useful predictor in our simulations

even when input gregariousness was disabled (G = 1). Our

measure of gregariousness was covering some of the variation

in association rates produced by different individual use of the

study area.

Another concern is when predictor variables are calcu-

lated from the association data. For this reason, we used a

‘jackknife’ definition of gregariousness (eqn 4). A similar

problem of circularity, and potential resultant loss of power

for generalized affiliation indices as indicators of true affilia-

tion, arises if memberships of social units are used as predic-

tor variables (see above) when these social units are

themselves delineated from the association data using clus-

ter analysis or maximization of modularity.

The model that we have postulated (eqn 2) assumes additiv-

ity of predictor variables. So, for instance, the range overlap

effect is added to the gregariousness effect to produce an

expected value of the association index. In some situations,

multiplicative effects may be more appropriate, so that if there

is little range overlap between a pair, the possible effect of their

similarity in gregariousness is proportionally reduced. This

could be achieved by logging the structural variables (as in our

definition of gregariousness, eqn 4) and possibly changing the

link function. However, using an additive model (eqn 2) on

Table 2. Statistics and tests of half-weight association indices and gen-

eralized affiliation indices for 16 northern bottlenose whales

Association

indices

Generalized

affiliation

indices

Differences between age-sex classes

Matrix correlation 0�413 0�008
Mantel test,P-value

(1000 permutations)

0�000 0�569

Correlation coefficients among network statistics1

Strength by clustering coefficient 0�653 0�077
Strength by affinity 0�710 0�030

Modularity2

Communities identified

usingmodularity

2 4

Modularity 0�235 0�112
Tests for preferred associations3

All whales (n = 16)

SD (indices), real:

random (mean)

0�094: 0�090 0�079: 0�079

P-value 0�002 0�439
Maturemales (n = 7)

SD (indices), real:

random (mean)

0�132: 0�125 0�124: 0�117

P-value 0�094 0�082
1Network statistics are as follows: strength (sum of association indices

or generalized affiliation indices linking each individual); clustering

coefficient (a measure of how well the associates of an individual are

themselves associated using the matrix definition of clustering coeffi-

cient for weighted networks of Holme et al. (2007)); affinity (the

strength of an individual’s associates, weighted by the association index

between the individual and each of them).
2Modularity indicates how well a network can be divided into com-

munities. We use Newman’s (2006) eigenvector-based method.

Modularities above 0�3 indicate substantial support for the division

(Newman 2004).
3Permutation tests using flips of pairs of associations within sam-

pling periods with 1000 permutations, 1000 flips/permutation

(Whitehead 2008, 129–130). Test not possible just using females

because of data structure.
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our simulated data which were produced using amultiplicative

model (eqn 5) seemed towork effectively.

In their quest to control the structural factors affecting

association, current data-stream permutation tests – that

of Bejder, Fletcher & Br€ager (1998) and its successors –
are quite complex and time-consuming. As the generalized

affiliation index specifically removes the effects of the

structural factors, performing the data-stream permutation

tests on the generalized affiliation indices seems overkill –
the structural factors are apparently being removed twice.

Simpler node permutations of the data in each sampling

period do not work, as predictor variables, such as spatial

overlap, no longer match the data. Using our random

data, we have explored the possibility of using the fit of

the binomial generalized linear model (indicated by devi-

ance) to the association data as a test for underlying affil-

iations. If there are no affiliations, then the binomial

model should fit. Although, in our explorations, this

method had high Type I error rates, there may be other

relatively simple ways to test for underlying affiliations in

a social network using generalized affiliation indices. It

would also be very useful to have an overall ‘effect size’

for the degree of affiliation in the population. The social

differentiation (estimated coefficient of variation of true

association indices, before sampling) attempts this for

association indices (Whitehead 2008), but much more use-

ful would be a counterpart for affiliation indices.

The technique that we have explored could easily be

extended in a variety of ways. It could be used on interaction

counts (perhaps using the Poisson version of the generalized

linear model) or rates (perhaps using time spent observing

each dyad as an offset predictor variable). It could be used on

asymmetric data (e.g. grooming) and on rectangular rather

than square association matrices (e.g. males versus females).

Categorical variables (a category for each dyad) could be used

as predictors.

One of us (HW) has incorporated the calculation and

analysis of generalized affiliation indices, including all the fea-

tures used in our examples, into the next (soon to be released)

version of SOCPROG, a MATLAB-based package for the

analysis of animal social structure (Whitehead 2009). Other

social analysis packages, such as the R program asnipe (Far-

ine 2013), might be integrated with this methodology or

extended to use it directly.

Conclusion

Generalized affiliation indices provide a new route for uncover-

ing affiliations in animal social networks. They can be used

instead of structured data-stream permutation tests or in con-

junction with them. They are more flexible than currently

available data-stream permutation tests in how they deal with

structural factors affecting association and can be used for a

wide range of purposes, including the production of affiliation-

based network diagrams, network statistics, division into com-

munities and testing for overall affiliation.
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Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Table S1. Summary of results of analysis of simulated data, Each row

represents the results of 100 runs with the same set of parameters: mean

difference between Cohen’s d comparing affiliates and non-affiliates,

for affiliation indices and association indices (for binomial, linear and

Poisson models); the partial correlation of the association index with

gender similarity, temporal similarity, the nuisance variable, and gre-

gariousness, controlling for the other predictor variables and the num-

ber of runs in which theMRQAP test rejected the null hypothesis of no

effect on association, controlling for the other predictor variables; and

the results of data-stream permutation tests for preferred/avoided asso-

ciations (using simple ratio association indices; SRI) and affiliations

(using generalized affiliation indices with binomial model) indicated by

mean P-values over all runs, and the number of runs for which the null

hypothesis of no preferred/avoided relationship was rejected

(P < 0.05).

Appendix S1.Data scripts.

Appendix S2.MATLAB scripts.

Appendix S3. SOCPROG2.6.zip.
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