
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Journal of Theoretical Biology 245 (2007) 341–350

Learning, climate and the evolution of cultural capacity

Hal Whitehead�

Department of Biology, Dalhousie University, 1355 Oxford St, Halifax, Nova Scotia, Canada B3H 4J1

Received 21 July 2006; received in revised form 2 September 2006; accepted 2 October 2006

Available online 11 October 2006

Abstract

Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic,

individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination,

individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in

variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists.

When environmental variation is large and equal over all time-scales (‘‘white noise’’) then individual learning is adaptive. Social learning

is advantageous in ‘‘red noise’’ environments when variation over long time-scales is large. Climatic variability increases with time-scale,

so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for

social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of

many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The

ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived

organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This

provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Behavior may be determined in several ways. These
include direct genetic determination, individual learning
and social learning, as well as combinations of these. Social
learning can be from parents (vertical), other models of the
previous generation (oblique), or peers (horizontal). Each
of these learning tactics has benefits and costs. In any
environment a particular type of behavior will be optimal,
and the further removed actual behavior is from this
optimal type, the lower the expected fitness of the
organism. Individual learning—in which the organism
experimentally adjusts its behavior—will usually track a
varying environment most closely but may be costly in
terms of time, energy, predation risk, and the metabolic
costs required to operate an efficient learning control
system (such as a brain). Social learning—in which the

behavior of other organisms is copied or learned as a
consequence of sociality—will be usually less costly and
may produce efficient behavior, although perhaps not in
some environments. Cheapest of all is direct genetic
determinism of behavior, but this may lead to severely
suboptimal behavior in variable environments. These
trade-offs imply that ecology was a major driver of the
evolution of learning (Lefebvre and Palmeta, 1988).
Following this reasoning, several authors have sug-

gested, and illustrated using a variety of verbal and
analytical models, that patterns of environmental variation
should affect the evolution of different modes of behavioral
control (Boyd and Richerson, 1983, 1985, 1988, 1996;
Feldman et al., 1996; Lachmann and Jablonka, 1996;
Laland et al., 1996; Wakano et al., 2004; Aoki et al., 2005).
There is particular interest in the evolution of social
learning, as social learning is the basis of culture, and
cultural evolution can move behavior and population
biology into radical paths, as shown dramatically in the
case of modern humans (Richerson and Boyd, 2004).
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Richerson and Boyd (1998, 2004) have suggested that
advanced cultural capacity and rapid cultural evolution in
humans originated in the Pleistocene when environmental
variation was high. Similarly, in trying to explain the
apparent prevalence of cultural capacity in the cetaceans
(whales and dolphins), Rendell and Whitehead (2001)
noted that patterns of environmental variation in the ocean
are ‘‘redder’’ (i.e. have proportionally greater variance over
longer time periods) than on land (Steele, 1985), and that
this might promote social learning.

The models behind these suggestions make many simpli-
fying assumptions of necessity. In the analytical models, only
two or three (in the cases of Wakano et al., 2004; Aoki et al.,
2005) learning strategies are compared, and environmental
variation is described by a two-state Markov model (e.g.
Boyd and Richerson, 1988; Lachmann and Jablonka, 1996)
or first-order autoregressive model (e.g. Boyd and Richer-
son, 1985), whereas real environmental variation is complex,
and includes elements of many frequencies whose signifi-
cance may vary with habitat and time period (Steele, 1985).
Despite these simplifications, analytical models of the
evolution of learning in variable environments quickly lose
tractability, requiring simplifying assumptions and making
results uncertain (Aoki, 1991). Therefore, when analysing
the evolution of learning strategies, there has been a recent
move towards simulation modeling. When considering the
effects of environmental variation, Aoki et al. (2005) used
randomization to select between analytical models of
constant and changed environments.

Here, I simulate environmental variation with a range of
characteristics using the 1/f noise family of models,
described by the slope of the inverse of the power frequency
spectrum (o), and an amplitude measured by the standard
deviation of the noise as a proportion of the standard
deviation of a Gaussian fitness-environment function. 1/f
models provide a good description of environmental
fluctuation, having considerable empirical support (Halley,
1996), and being used in many ecological and evolutionary
models (Gisiger, 2001). I examine the evolution of
behavioral control strategies in different 1/f environments
using individually based evolutionary stochastic models for
populations with both semelparous (in which each
individual has only one birth interval, and so generations
do not overlap) and iteroparous (in which individuals may
give birth in several intervals, so generations overlap)
breeding. Unlike previous models, this approach allows 15
learning strategies to compete simultaneously against one
another in complex environments. The primary learning
tactics, in order of increasing cost, are genetic determina-
tion, vertical (parental) social learning, oblique/horizontal
(from the general population) social learning, and indivi-
dual learning. Contingent strategies include combinations
of these, in which, at any time, individuals adopt that tactic
with the greatest expected fitness, but pay an additional
cost for the ability to choose. The principal goal of the
analysis is to predict the learning strategies that are likely
to evolve in different environmental conditions.

2. Methods

The models consider a univariate environment with
value y(t) at time t. Individuals have behavior expressed by
a univariate measure x(i,t), the behavior of individual i at
time t. The fitness of individual i at time t is given by the
Gaussian function (as in Boyd and Richerson, 1985):

wði; tÞ ¼ DðiÞCuði;tÞe
jxði;tÞ�yðtÞj2=2q2 . (1)

Thus the closer x(i,t) is to y(t), the better its behavior
tracks the environment, and the more successful the
animal. q is the SD of the fitness function, such that a
small q gives large penalties for failing to track the
environment closely. Without loss of generality, I set
q ¼ 0.8494 so that if x(i,t) is one unit from y(t) there is a
50% drop in fitness. u(i,t) is a categorical variable
indicating he learning tactic used by organism i at time t:
either genetic determination (u ¼ G), vertical social learn-
ing (u ¼ V), oblique/horizontal social learning (u ¼ H) or
individual learning (u ¼ I). Cu(i,t) reflects the cost of that
learning tactic, and D(i) the costs of flexibility, or
contingency, in the learning tactics available to individual
i. x(i, t) is made up of a target value of the behavior at time
t (from genes or learning), X(i,t,u(i,t)), plus some normal
random error with mean zero and standard deviation s, the
behavioral accuracy.
Genetically driven behavior (u ¼ G) has low baseline

cost (CG ¼ 1), and the target behavior is passed accurately
from generation to generation, so X(i,t,G) ¼ X(P(i),tb(i),G)
(where P(i) is the parent of i, and tb(i) is the time unit of
birth for i), and the realized behavior varies around this.
Somewhat more costly because of the energy and time
needed to develop the physiology for social learning, and to
learn, is social learning in which realized behavior of other
individuals in previous time units becomes the target
behavior. Social learning comes in two possible forms:
vertical (u ¼ V) where learning is from the parent only so
the realized behavior of the parent becomes the target
behavior of the offspring, X(i,t,V) ¼ x(P(i),tb(i)) and
oblique/horizontal (u ¼ H), where the mean realized
behavior of all individuals in the previous time unit is
used as the target behavior, X(i,t,H) ¼ Mean[x(j,t�1)].
Vertical social learning is assumed to be less costly than
oblique/horizontal (CHoCVo1) as the behavior of fewer
models is observed. Individual learning (u ¼ I), in which
the target behavior is that which maximizes fitness,
X(i,t,I) ¼ y(t), is most accurate and costly (CIoCH). The
ordering of these costs is consistent with that in previous
models (e.g. Boyd and Richerson, 1985). Changing this
ordering will radically change the results of the modelling.
Some individuals are restricted to one of the four tactics,

so their learning strategy is either genetic determination,
vertical social learning, oblique/horizontal social learning
or individual learning. Others have contingent strategies,
in which two or more of the basic tactics are consi-
dered at each time unit, and the individual adopts
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the one with maximum expected fitness. The expec-
ted fitness for individual i at time t adopting tactic u is
given by

Eðwði; tÞjuÞ ¼
qCu

s2 þ q2
e� X ði;t;uÞ�yðtÞð Þ

2=2ðs2þq2Þ (2)

[obtained by integration using Eq. (1) and xði; tÞ ¼
NðX ði; t; uÞ; sÞ]. Then the contingent individual adopts that
tactic, among those within its contingent set, which
maximizes this expectation. This formulation assumes that
evolution has led to the adoption of adaptive choice among
the basic tactics, but does not assume any particular
method for making this choice. All 11 contingent
strategies, containing from all 2–4 combinations of the
four primary tactics, have some biological plausibility. I
assume that possessing the ability of adopting contingent
strategies introduces further costs, reducing fitness by a
factor of d (o1) if two tactics are available (so D ¼ d),
D ¼ d2 if three are, and D ¼ d3 for an individual with all
four options, whereas D ¼ 1 for individuals restricted to
one of the primary tactics.

I assume that an individual’s strategy is inherited from
its parent (haploid population).

In the iteroparous (overlapping generations) version of
the model, the probability of survival of an individual
between consecutive time units is m. Only survivors
reproduce, and the number of offspring of individual i

which survive to time unit t+1 is

Poisson
N � nsðtÞð Þwði; tÞP

wðj; tÞ

� �
, (3)

where nS(t) is the total number of survivors from time unit t

to t+1, and the summation in the denominator is over these
individuals. This gives density-dependence with equilibrium
population size N ( ¼ 1,500), and an expected reproductive
rate of individual i at time t proportional to w(i,t).

In the semelparous (non-overlapping generations) ver-
sion, each individual lives for one time unit, and may give
birth to individuals in the next time unit, so a generation is
one time unit. The number of offspring of individual i in
the following generation (t+1) is

Poisson
N � wði; tÞP

wðj; tÞ

� �
. (4)

Environmental trajectories were calculated with a variety
of spectral types and levels of noise. Starting off with
Gaussian white noise, in which each element is an
independent normally distributed random variable with
mean 0 and standard deviation 1, Y ðt ¼ 1; . . . ;TÞ, for any
slope of the inverse of the noise frequency spectrum, o, a
new trajectory can be calculated:

y ¼
d � S�1 SðY Þ

�o
ð Þ

SD S�1 SðY Þ
�o

ð Þ
� � , (5)

where S is the Fourier transform, and S�1 the inverse
Fourier transform. The power frequency spectrum for
white noise is flat, so that S(Y)�o produces an inverse

power frequency spectrum with slope o. d gives y the
desired variance.
Initially the population included 100 individuals of each

of 15 learning types, each assumed to have a different
parent, with intrinsic and target behavior X ¼ N(0,s), and
realized behavior x ¼ N(X,s) for this parental generation.
The model run proceeded until all remaining individuals
were using the same learning strategy, or (more rarely; 22%
of runs), if no learning strategy became universal, after T

time units. For the iteroparous (overlapping generations)
model, T ¼ 214 ( ¼ 16,384) time units, and for the
semelparous (non-overlapping generations) model, in
which evolution proceeded more rapidly, T ¼ 29 ( ¼ 512)
time units. The semelparous model was also run with
T ¼ 214 for some parameter combinations, but results were
similar, and are not presented.
One hundred sets of runs were made, each with a

different T-element initial series of Gaussian white noise,
Y, and each including one run with each combination of
o ¼ �0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 (mild blue to very red
noise), and d ¼ 0.125, 0.25, 0.5, 1, 2, 4, 8 (scaled relative to
q, the SD of the fitness function), so indicating situations
ranging from when environmental variation has almost no
effect on fitness to when its precise value is absolutely
crucial. To incorporate parameter uncertainty, for each set
of runs, values for survival and learning parameters were
randomly chosen from the following possibilities:

Survival (just for iteroparous populations):
m ¼ {0.75,0.90,0.95,0.975,0.99};
Behavioral accuracy: s ¼ {0.08,0.15,0.25,0.50,0.75};
Cost of vertical learning: CV ¼ 1�{0.01,0.03,0.05,
0.07,0.1};
Cost of horizontal/oblique learning:
CH ¼ CV�{0.01,0.03,0.05,0.07,0.1};
Cost of individual learning:
CI ¼ CH�{0.01,0.03,0.05,0.07,0.1};
Cost of contingency: d ¼ {0.90,0.93,0.95,0.97,0.99}.

Results from runs in which each parameter was varied in
turn, keeping the others constant, are presented in the
Appendix.
For a given type of environment (defined by o and d) the

success of a learning strategy was indicated by the mean
proportion of the survivors with that strategy over the 100
runs in that environment. In most runs the survivors used
just one strategy, but this successful strategy could vary
between runs using the same set of parameters.

3. Results

For iteroparous (non-overlapping generations) popula-
tions in which individuals can reproduce during several
time units, the evolution of learning occurs differently
in three principal types of climate (Fig. 1(a)). With
low amplitude environmental noise, having a standard
deviation less than about 40% of the SD of the fitness
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function, genetic determination is general. With high
amplitude environmental ‘‘white’’ noise, with oo�0.7,
individual learning usually prevails. When the environ-
mental noise is red (o4�0.7) and of amplitude
greater than the SD of the fitness function, then organisms
usually employ social learning, generally oblique/horizon-
tal but sometimes contingent strategies including vertical
learning.

Variation in the input parameters modifies this picture in
intuitively reasonable ways (see Appendix). Reducing the
costs of individual learning, learning in general, or
contingency increases the prevalence of the respective
strategies, and vice versa. Additionally, with low costs of
learning, pure individual learning becomes important at
very high levels of red noise (at all values of o). Substantial
changes in behavioral accuracy, the ability of the learning
tactics to produce behavior close to the environmental
optimum, had relatively minor effects on the results.

For semelparous (overlapping generations) populations,
in which individuals reproduce only once, the results are
less consistent for high amplitude red noise (Fig. 2);
individual learning or a contingent strategy including
vertical social learning and individual learning often
predominating. The latter is ironic in that vertical social
learning will not be available to many semelparous

organisms, whose parents are not likely be alive during
the learning phase of the life cycle.

4. Discussion

4.1. The effects of failures in model assumptions

An important assumption of the model is that the
accuracies of all basic learning tactics are taken to be equal.
If they are not, the optimal strategy regions will be modified.
For instance, if socially learned behavior is closer to the
mean of the models’ behavior than individually learned
behavior is to the environmental optimum, then social
learning will prevail in larger regions than suggested in Fig.
1(a) (Boyd and Richerson, 1985). Another simplification of
the models is in using a haploid model of both the genetic
determination of behavior and in the inheritance of learning
strategy. However, as the primary advantage of genetic
determination in this context is that it allows organisms to
have similar behavior to the successful members of the
previous generation at no cost, it seems unlikely that diploid
inheritance would make any substantial difference to the
results.
The model parameters are treated as fixed, but it is

reasonable that the accuracy of a learning tactic (indicated

Fig. 1. Distribution of evolved learning strategies in different environmental conditions for the iteroparous (overlapping generations) model with

randomly chosen learning and survival parameter values (a). Pie diagrams show mean proportions of persisting individuals with each learning strategy:

‘Genetic’ determination, ‘Individual’ learning, ‘Vertical’ and ‘Horizontal’ (horizontal/oblique) social learning, and contingent combinations. Strategies not

shown in the legend accounted for less than 10% of the surviving individuals for any type of environmental noise. Representative trajectories for each type

of environmental noise are overlaid. Approximate ranges of the inverse of the slope of the noise spectrum (o) are shown in panel (b) for terrestrial thermal

climates (Pelletier, 1997), oceanic thermal climates (Hall and Manabe, 1997; Timmermann et al., 1998; Leeuwenburgh and Stammer, 2001; Dommenget

and Latif, 2002), and the population dynamics of organisms (Inchausti and Halley, 2002).

H. Whitehead / Journal of Theoretical Biology 245 (2007) 341–350344
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by 1/s) and its cost (indicated by 1/C) may be positively
related (Boyd and Richerson, 1985) on both ecological
and evolutionary scales. However, as variation in neither
s nor C had much effect on the overall results
(Appendix), I suspect that their linkage would also make
little impact.

The models in this paper allow different learning
strategies to compete on ‘‘an equal footing’’—they initially
have equal numbers of adherents. However, under some
scenarios, horizontal/oblique learning faces an initial
barrier: it is a good tactic when reasonably common, but
a poor tactic when rare, as there are few useful models
(Aoki and Feldman, 1987; Boyd and Richerson, 1996).
This is particularly the case when social learning competes
solely against a strategy of genetic determination. The way
over this initial barrier is through individual learning.
Individual learning, although costly, can outcompete
genetic determination in variable environments (Figs. 1
and 2). Once common, it may provide a substrate of
individuals with accurate behavior upon which less costly
social learning strategies can evolve, although there may
still be barriers (Boyd and Richerson, 1996), and other
constraints to the evolution of social learning, such as
cognitive substructure (Roper, 1986).

For many species, the fitness-determining environment
may include several dimensions, such as temperature and
rainfall. If all of the important environmental variables have
similarly structured frequency spectra, then the most variable
should determine the learning strategy. But, supposing, for
instance, that for a marine organism temperature has high

variance slightly red noise, and salinity lower variance but
much redder noise (Hall and Manabe, 1997), then the
situation becomes more complex, and I suspect that
contingent strategies will be particularly favored.
In most forms of social learning, such as imitation

and emulation, the costs primarily fall on the learner, and
this is assumed in my simulations. However, teaching is a
type of social learning in which the model incurs substantive
costs (Caro and Hauser, 1992). If teaching is vertical
(parent-offspring) or both teaching and being taught are
circumscribed within one inherited learning strategy, then
the models used here should be applicable. However, if
those who do not possess the ability to teach benefit from
being taught by non-relatives, then teaching will face
barriers to its evolution in addition to those considered here.

4.2. Comparisons with previous results

Previous studies of the evolution of learning capacity
(Boyd and Richerson, 1983, 1985, 1988, 1996; Feldman
et al., 1996; Lachmann and Jablonka, 1996; Laland et al.,
1996) were each only able to compare two or three (Aoki
et al., 2005) strategies, used less realistic models of
environmental variation, and their results are sometimes
uncertain because of mathematical intractability (Aoki,
1991). Thus as a whole they cover only a small part of the
scope of the current work. However, where available, the
results of such analytical comparisons of pairs of strategies
are generally in agreement with those from this more
comprehensive analysis. These include a prevalence of

ARTICLE IN PRESS

Fig. 2. Distribution of evolved learning after strategies in different environmental conditions for the semelparous (non-overlapping generations) model

with randomly chosen learning and survival parameter values. Pie diagrams show mean persisting proportions of individuals with each learning strategy:

‘Genetic’ determination, ‘Individual’ learning, ‘Vertical’ and ‘Oblique’ social learning, and contingent combinations. Strategies not shown in the legend

accounted for less than 10% of the surviving individuals for any type of environmental noise. Representative trajectories for each type of environmental

noise are overlaid.
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genetic determination when environmental variability is
very low (Cavalli-Sforza and Feldman, 1983; Boyd and
Richerson, 1985; Aoki et al., 2005), and that individual
learning may be more favorable than social learning when
environments become very variable over short time-scales
(Boyd and Richerson, 1988; Feldman et al., 1996; Laland
et al., 1996).

Some earlier models (e.g. Feldman et al., 1996; Wakano et
al., 2004; Aoki et al., 2005) predicted equilibrium mixed
populations of individual and social learning, with the
individual learners being needed to allow the social learners
to track environmental change. However, a quite frequent
outcome of my simulations (15% of runs for the iteroparous
model, and 3% for the semelparous model) was a
population consisting entirely of horizontal/oblique social
learners (Figs. 1 and 2). Such a population cannot track
environmental change in my models as the mean realized
behavior of the population is stationary through time. This
is illustrated in Fig. 3 by a quite typical run of the
iteroparous model in a variable and red environment.
Horizontal social learners initially increase in frequency, but
then, for many generations, their frequency ranges between
95–99%, with a small proportion of individual learners, or
those with contingent strategies, persisting and allowing the
population’s behavior to track the environment. However,
once these few, but important, ‘‘tracking’’ individuals are
gone, the behavior of the population stays nearly constant
while the environment changes (Fig. 3). At this point, in

reality, mean fitness declines dramatically and population
extinction is likely (although this was not shown by my
models which halted once one strategy had achieved
domination). The removal of the last ‘‘tracking’’ individuals
is a stochastic event, and will be less likely in populations
larger than the 1,500 of my model, but these results both
back up the importance of mixed populations found by
earlier models, and also illustrate the dangers of complete
cultural conformism in small populations, described so
vividly for human societies by Diamond (2005).
Boyd and Richerson (1983, 1985) estimated that a

strategy of social plus individual learning outcompetes
one of genetic determination plus individual learning in
variable environments when the environmental autocorre-
lation is greater than about 0.3, which with the 1/f models
is achieved when oX0.23. This is a little lower than when
social learning becomes important in my results (Figs. 1
and 2), but 1/f noise possesses characteristics absent in
autoregressive models, and the models in this paper allow
organisms many more options.

4.3. The evolution of learning strategies

Although the costs of learning and contingency can
affect the expected evolutionary outcome, the principal
regions shown in Figs. 1(a) and 2 are quite robust, as they
were derived using a range of parameter values but
produced similar results (see also Appendix). Thus to

ARTICLE IN PRESS

Fig. 3. The results of one run of the iteroparous model in a red and variable environment (o ¼ 2.0 and d ¼ 4.0) allowing the run to go 4,000 time units

beyond fixation of the horizontal learning strategy (a) showing (b) the trajectories of mean environment (y) and mean realized population behavior. Once

horizontal learning is fixed, population behavior no longer tracks environmental change.
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estimate the most effective and likely-to-evolve learning
strategy for a species principally requires knowledge of its
environment. What are the environmental variables that
most affect fitness and how do they vary both in
magnitude, relative to the fitness function, and spectral
characteristics?

While the level of environmental noise is relative to the
width of the fitness function, and thus dependent on the
autoecology of a species, the slope of the noise spectrum is
a characteristic of a particular variable in a particular
environment. I assume that the slope of the logged
environmental noise spectrum is straight, giving pure 1/f
noise. Environmental noise exponents usually change with
frequency, although they are often fairly linear over large
temporal scales (Hall and Manabe, 1997; Pelletier, 1997).
The time periods over which an organism can store energy
likely sets the lower limit of the range of time-scales
important for evolutionary processes and the order of ten
generations the upper limit (Richerson and Boyd, 2004).

Temperature is one of the most significant determinants
of ecology (Begon et al., 1996). The power spectrum of
temperature scales with o ¼ �0.5 at all except the smallest
time-scales when o ¼ �1.5 (Fig. 1(b)). This reddening of
the environment might suggest social learning being most
adaptive in the shortest-lived, and generally smallest
organisms. However, a consequence of the general redness
in temperature variation is that environmental variation is
low at very short time-scales, thus indicating genetic
determination for short-lived organisms. Conversely the
magnitude of lifetime environmental variation will be
effectively larger for long-lived organisms, although this
may be partially countered by wider fitness functions of the
longer-lived species, which will generally be better able to
buffer environmental variation through features such as
endothermy, larger body size (Lindstedt and Boyce, 1985),
or niche construction (Laland et al., 2000). If these
buffering effects counter the increase in environmental
variation with time scale, then genetic determination
should also prevail, but more usually, I think, environ-
mental variation will be large compared to the SD of the
fitness function for long-lived organisms, and the model
predicts that evolution should promote individual learning,
or some other form of phenotypic plasticity that has
characteristics indistinguishable from individual learning in
my model (Agrawal, 2001). There appears to be little role
for social learning in a thermally dominated environment.

However, temperature is not the only environmental
dimension, and for many species the abundance of other
species, especially predators, hosts and prey, will be the
most significant determinants of fitness. Population series
show a range of spectral exponents, but they are mostly red
with a median exponent of o ¼ �1.1 (Inchausti and
Halley, 2002; Fig. 1(b)). In Inchausti and Halley’s study,
larger species had generally redder population biology, and
among taxonomic groups with reasonable sample sizes
(410), mammal populations were reddest (Inchausti and
Halley, 2002). Thus, if patterns of population variability

are indicative of environmental variability, the environ-
ments of larger, higher trophic level, animals, especially
mammals, are likely redder than suggested by the spectral
analysis of the thermal climate alone, and are in the range
that favors social learning. Therefore social learning will
likely have been most favored among large, long-lived and
slowly reproducing mammals, and especially their pre-
dators. Also favored will be any other mechanism that
transmits useful information in a parallel manner, such as
maternal effects.
My results support Richerson and Boyd’s (2004)

hypothesis that increased climatic variation in the Pleisto-
cene may have driven, at least partially, the evolution of
sophisticated social learning in humans. Unfortunately, we
do not know how levels and spectral characteristics of
environmental variation at scales of months to decades
have changed over most of the past million years, but
inferences from lower frequency data indicate a general
increase in conditions that would promote social learning
(Richerson and Boyd, 2004).
Oceanic environments are structured somewhat differ-

ently from those on land. In the sea, very red (o ¼ �1.5)
thermal environments are found at scales up to about a
year (as compared to 1 month on land; Fig. 1(b)). Oceanic
organisms with lifetimes of less than a few months live in
very stable environments and so their behavior will tend to
be genetically determined. Moving to longer-lived animals
and up the food chain, environmental variability will
increase, and trophic effects will likely increase redness for
species higher on the food chain, as on land (Kaitala et al.,
1997), but more so (Steele, 1985). Of the groups of species
examined by Inchausti and Halley (2002), the secondary
carnivore aquatic species had much the reddest population
trajectories (oE1.5; n ¼ 5), and so the ocean might
particularly favor social learning, especially among large
marine mammals (Rendell and Whitehead, 2001).
Spatial variation in the environment can also be important

(Boyd and Richerson, 1985, 1988). If, through active or
passive movement, individuals are quite likely to live in
environments very different from their parents, or to change
environments during their lifetimes, then this will affect the
efficacies of different behavioral control strategies. Horizontal
social learning of local optimal conditions, or vertical social
learning of optimal movement strategies, may be favored
(Boyd and Richerson, 1988; Rendell and Whitehead, 2001).
Oceanic environments have red temperature–distance spectra
over scales up to about 5,000km (Leeuwenburgh and
Stammer, 2001), and the dynamics of marine fish populations
are generally correlated over larger spatial scales than those in
freshwater (Myers et al., 1997), both of which might indicate
relatively greater benefits to social learning in the ocean.

5. Conclusion

The results of this study go beyond those from
previous work in several respects. A two-dimensional space
of environmental variability, that likely includes good
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approximations for most real environments, is mapped for
the types of behavioral determination most likely to evolve.
A wide range of strategies is considered. In some areas of
this map, there are clear and consistent results over a wide
range of parameter values, especially that genetic determi-
nation should predominate with low environmental varia-
tion, that individual learning is likely to evolve in
environments with much high-frequency noise, and social
learning where variation is dominated by low frequencies.
While these main results are both intuitive and indicated by
previous analytical models, this analysis is much more
explicit about the boundaries of the principal regions of the
map. Because one of the axes of the environmental variation
space, o, is measurable, and values are available for real
environments, the results of the modelling can be translated
into fairly precise predictions for the type of behavioral
determination of a species as a function of the principal
environmental determinants of fitness. So, for instance, I am
able to conclude that learning is more likely to evolve in
long-lived animals, and that, among long-lived animals, we
should expect generally more social learning at higher
trophic levels, and in marine species.

However, this is just a start, and there is much more
useful work that could be done with this kind of model.
Some possibilities have been indicated earlier in the
discussion. For instance, it is simplistic and unrealistic to
have all learning strategies starting off on an equal footing.

The ability of more complex strategies to invade popula-
tions dominated by simpler, ancestral, strategies needs
investigation, as do the conditions for the collapse of
populations when social learning becomes universal (Fig.
3). Another instance where additional modeling would be
desirable is in the evolution of cost-accuracy profiles within
learning tactics.
For particular species, this approach could also be

developed by investigating which principal sources of
environmental variation affect fitness. These sources could
then be analysed using the 1/f approach, and the
predictions of the model compared with actual studies of
behavioral determination. This would be even more
informative if carried out across several related species.
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Appendix. Effects of parameter variation

To investigate the effects of parameter variation on the
results of the model, 20 sets of runs, each containing all

ARTICLE IN PRESS

Fig. 4. Effects of parameter variation on results of iteroparous (overlapping generations) model. Each panel represents the results of running the model

with a different set of parameters. The pie diagrams show the mean proportion of individuals with each learning strategy over twenty random runs.

(‘Genetic’ ¼ genetic determination; ‘Indiv’ ¼ individual, ‘Vert’ ¼ vertical, and ‘Horiz’ ¼ horizontal/oblique social learning.) All strategies not shown in

the legend on the right accounted for less than 10% of the surviving individuals for any type of environmental noise and set of parameters.
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combinations of o ¼ �0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and
d ¼ 0.125, 0.25, 0.5, 1, 2, 4, 8, were made with a ‘‘standard’’
set of parameters (m ¼ 0.975; s ¼ 0.25; CV ¼ 0.95;
CH ¼ 0.90; CI ¼ 0.85; d ¼ 0.95), as well the following
variants:

‘‘High learning costs’’: s ¼ 0.25; CV ¼ 0.90; CH ¼ 0.80;
CI ¼ 0.70; d ¼ 0.90.
‘‘Low learning costs’’: s ¼ 0.25; CV ¼ 0.98; CH ¼ 0.96;
CI ¼ 0.94; d ¼ 0.98.
‘‘High contingency costs’’: s ¼ 0.25; CV ¼ 0.95;
CH ¼ 0.90; CI ¼ 0.85; d ¼ 0.90.
‘‘Low contingency costs’’: s ¼ 0.25; CV ¼ 0.95;
CH ¼ 0.90; CI ¼ 0.85; d ¼ 0.98.
‘‘Costly individual learning’’: s ¼ 0.25; CV ¼ 0.95;
CH ¼ 0.90; CI ¼ 0.70; d ¼ 0.95.
‘‘Accurate behavior’’: s ¼ 0.08; CV ¼ 0.95; CH ¼ 0.90;
CI ¼ 0.85; d ¼ 0.95.
‘‘Inaccurate behavior’’: s ¼ 0.75; CV ¼ 0.95; CH ¼ 0.90;
CI ¼ 0.85; d ¼ 0.95.

Results for the different parameter combinations are
shown in Figs. 4 and 5 for the iteroparous (overlapping
generations) and semelparous (non-overlapping genera-
tions) models, respectively.

References

Agrawal, A.A., 2001. Phenotypic plasticity in the interactions and

evolution of species. Science 294, 321–326.

Aoki, K., 1991. Some theoretical aspects of the origin of cultural

transmission. In: Osaua, S., Honjo, T. (Eds.), Evolution of Life:

Fossils, Molecules and Culture. Springer, Tokyo, pp. 439–449.

Aoki, K., Feldman, M.W., 1987. Toward a theory for the evolution of

cultural communication: coevolution of signal transmission and

reception. Proc. Natl. Acad. Sci. USA 84, 7164–7168.

Aoki, K., Wakano, J.Y., Feldman, M.W., 2005. The emergence of social

learning in a temporally changing environment: a theoretical model.

Curr. Anthrop. 46, 334–340.

Begon, M., Harper, J.L., Townsend, C.R., 1996. Ecology. Individuals,

Populations and Communities, third ed. Blackwell Science, Oxford, UK.

Boyd, R., Richerson, P.J., 1983. The cultural transmission of acquired

variation: effects on fitness. J. Theor. Biol. 100, 567–596.

Boyd, R., Richerson, P., 1985. Culture and the Evolutionary Process.

Chicago University Press, Chicago.

Boyd, R., Richerson, P., 1988. An evolutionary model of social

learning: the effects of spatial and temporal variation. In: Zentall,

T., Galef, Jr., B.G. (Eds.), Social Learning: Psychological and

Biological Perspectives. Lawrence Erlbaum Association, Hillsdale,

NJ, pp. 29–48.

Boyd, R., Richerson, P.J., 1996. Why culture is common, but cultural

evolution is rare. Proc. Br. Acad. 88, 77–93.

Caro, T.M., Hauser, M.D., 1992. Is there teaching in non-human animals?

Quart. Rev. Biol. 67, 151–174.

Cavalli-Sforza, L.L., Feldman, M.W., 1983. Cultural versus genetic

adaptation. Proc. Natl. Acad. Sci. USA. 80, 4993–4996.

ARTICLE IN PRESS

Fig. 5. Effects of parameter variation on results of semelparous (non-overlapping generations) model. Each panel represents the results of running the

model with a different set of parameters. The pie diagrams show the mean proportion of individuals with each learning strategy over 20 random runs.

(‘Genetic’ ¼ genetic determination; ‘Indiv’ ¼ individual, ‘Vert’ ¼ vertical, and ‘Oblique’ ¼ oblique social learning.) All strategies not shown in the legend

on the right accounted for less than 10% of the surviving individuals for any type of environmental noise and set of parameters.

H. Whitehead / Journal of Theoretical Biology 245 (2007) 341–350 349



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Diamond, J., 2005. Collapse: How Societies Choose to Fail or Succeed.

Penguin, New York.

Dommenget, D., Latif, M., 2002. Analysis of observed and simulated SST

spectra in the midlatitudes. Clim. Dyn. 19, 277–288.

Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual versus social

learning: evolutionary analysis in a fluctuating environment. Anth. Sci.

104, 209–231.

Gisiger, T., 2001. Scale invariance in biology: coincidence or footprint of a

universal mechanism? Biol. Rev. 76, 161–209.

Hall, A., Manabe, S., 1997. Can local linear stochastic theory explain sea

surface temperature and salinity variability? Clim. Dyn. 13, 167–180.

Halley, J.M., 1996. Ecology, evolution and 1/f noise. Trends Ecol. Evol.

11, 33–37.

Inchausti, P., Halley, J., 2002. The long-term temporal variability and

spectral colour of animal populations. Evol. Ecol. Res. 4, 1033–1048.

Kaitala, V., Ylikarjula, J., Ranta, E., Lundberg, P., 1997. Population

dynamics and the colour of environmental noise. Proc. Roy. Soc.

London B. 264, 943–948.

Lachmann, M., Jablonka, E., 1996. The inheritance of phenotypes: an

adaptation to fluctuating environments. J. Theor. Biol. 181, 1–9.

Laland, K.N., Richerson, P.J., Boyd, R., 1996. Developing a theory of

animal social learning. In: Heyes, C.M., Galef, B.G.J. (Eds.), Social

Learning in Animals: The Roots of Culture. Academic Press, San

Diego, California, pp. 129–154.

Laland, K.N., Odling-Smee, J., Feldman, M.W., 2000. Niche construc-

tion, biological evolution and cultural change. Behav. Brain Sci. 23,

131–175.

Leeuwenburgh, O., Stammer, D., 2001. The effect of ocean currents on sea

surface temperature anomalies. J. Phys. Oceanogr. 31, 2340–2358.

Lefebvre, L., Palmeta, B., 1988. Mechanisms, ecology, and population

diffusion of socially- learned food-finding behavior in feral pigeons. In:

Zentall, T.R., Galef, B.G. (Eds.), Social Learning: Psychological

and Biological Perspectives. Lawrence Erlbaum, Hillsdale, NJ,

pp. 141–165.

Lindstedt, S.L., Boyce, M.S., 1985. Seasonality, fasting endurance, and

body size in mammals. Am. Nat. 125, 873–878.

Myers, R.A., Mertz, G., Bridson, J., 1997. Spatial scales of interannual

recruitment variations of marine, anadromous, and freshwater fish.

Can. J. Fish. Aquat. Sci. 54, 1400–1407.

Pelletier, J., 1997. Analysis and modeling of the natural variability of

climate. J. Clim. 10, 1331–1342.

Rendell, L., Whitehead, H., 2001. Culture in whales and dolphins. Behav.

Brain Sci. 24, 309–324.

Richerson, P.J., Boyd, R., 1998. The evolution of human ultrasociality. In:

Eibl-Eibesfeldt, I., Salter, F.K. (Eds.), Indoctrinability, Ideology and

Warfare. Berghahn Books, London, pp. 71–95.

Richerson, P.J., Boyd, R., 2004. Not by Genes Alone: How Culture

Transformed Human Evolution. University of Chicago Press,

Chicago, IL.

Roper, T.J., 1986. Cultural evolution of feeding behaviour in animals. Sci.

Prog. 70, 571–583.

Steele, J.H., 1985. A comparison of terrestrial and marine ecological

systems. Nature, Lond 313, 355–358.

Timmermann, A., Latif, M., Voss, R., Grötzner, A., 1998. Northern
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