
Tools and Technology Article

Estimating Abundance From One-Dimensional Passive
Acoustic Surveys

HAL WHITEHEAD,1 Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada

ABSTRACT Conventional distance sampling, the most-used method of estimating animal density and abundance, requires ranges to

detected individuals, which are not easily measured for vocalizations. However, in some circumstances the sequential pattern of detection of

vocalizations along a transect line gives information about the range of detection. Thus, from a one-dimensional acoustic point-transect survey

(i.e., records of vocalizations detected or not detected at regularly spaced listening stations) it is possible to obtain a useful estimate of density or

abundance. I developed equations for estimation of density for one-dimensional surveys. Using simulations I found that for the method to have

little bias when both range of detection and rate of vocalization need to be estimated, stations needed to be spaced at 30–80% of the range of

detection and the rate of vocalization should be .0.7. If either the range of detection or rate of vocalization is known, conditions are relaxed,

and when both parameters are known the method works well almost universally. In favorable conditions for one-dimensional methods,

estimated abundances have overall errors not much larger than those from conventional line-transect distance sampling. The methods appeared

useful when applied to real acoustic data from whale surveys. The techniques may also be useful in surveys with nonacoustic detection of

animals. (JOURNAL OF WILDLIFE MANAGEMENT 73(6):1000–1009; 2009)
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Distance sampling is the most frequently used method of
assessing populations of wild animals (Buckland et al. 2004).
In distance sampling, the primary data are records of
individuals (or clusters of individuals) detected during
continuous transects or at point samples together with an
estimate of their ranges. These ranges permit estimation of
coverage of the survey and, thus, convert the detection rate into
estimates of density and population size (Buckland et al. 2001).

In distance sampling, detection of individuals or clusters is
potentially by any sensory mode although visual detection
overwhelmingly predominates, even though many species
are more readily detected acoustically than visually. For such
species, acoustic surveys (sometimes combined with visual
methods) frequently provide data to plot distributions and
examine trends in abundance with time and environmental
variables (Jaquet and Whitehead 1996, Norris et al. 1999,
Nichols et al. 2009), but estimates of density or population
size are much rarer. There are several reasons for the rare use
of distance-sampling methodology in acoustic surveys, but
probably most significant are the difficulties of assigning
vocalizations to particular animals and estimating the range
to the vocalizing animals (Nichols et al. 2009). These steps
are generally harder for acoustic cues than with visual
detection. A few techniques are available for estimating
effective acoustic detection range, particularly for cetaceans,
but these techniques generally need quite sophisticated
equipment or processing of the acoustic data (e.g., Leaper et
al. 2000, Barlow and Taylor 2005, Nichols et al. 2009).

A common form of acoustic survey is to record whether
vocalizations are detected at regular stations along a transect
line. Because ranges to detected animals are usually not
recorded, such survey data are not typically used for density
or abundance estimation. However, the sequential pattern of
detections of vocalizations potentially gives information

about the range of detection. The idea is that if the distance
between listening stations along a transect line is less than
the range of detection, then the rate at which detections
follow one another permits estimation of the detection
range. Thus, my goal was to determine the circumstances in
which it may be possible to obtain a useful estimate of
density or abundance from a one-dimensional acoustic
point-transect survey without sophisticated collection or
processing of acoustic data (e.g., series of bearings to
particular vocalizers). My specific objectives were to 1)
derive equations that estimate detection range, probability
that an individual is vocalizing, and density from such survey
data, 2) investigate the circumstances under which these
estimates have little bias, 3) compare expected errors of one-
dimensional methods with those from conventional 2-
dimensional distance sampling in a situation where both are
feasible, 4) illustrate use of the methods on real acoustic
transect data, and 5) suggest general protocols for their use.

METHODS

A Model and 4 Methods
I assumed that an acoustic survey consisted of a transect line
(not necessarily perfectly straight) with listening stations
regularly spaced at d distance units. There was a record for
each station as to whether vocalizations were detected, not the
number of vocalizers. Presence–absence data is simpler to
collect in the field and has been the subject of technical
development in related applications (e.g., estimation of
abundance from repeated presence by Royle and Nichols 2003).

I assumed that individuals were randomly and indepen-
dently distributed at a density of a/unit2 and could be
detected within a range of r units. Individuals produced
audible (to listeners within range r) sounds with probability
m during any listening. Probabilities were uncorrelated
among listening stations if an individual was within audible
range for

L

2 stations. As in conventional line-transect1 E-mail: hwhitehe@dal.ca
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distance sampling, I assumed individuals did not move.
Therefore, density of vocalizers is a 3 m per unit area and
probability that

L

1 vocalizers were detected at a station is

1 { e{ampr2 ð1Þ

Thus, if vocalizations were heard at a proportion of p
stations, an estimate of density is

âa ~ {Log 1 { p
� ��

mpr2 ð2Þ

Using equation 2 I can estimate density if I know m and r
(method A).

If I do not know m, but know r, then the rate at which
vocalizations were detected at pairs of consecutive stations
gives information about m. For instance, if there were stations
without detected vocalizations and d is much less than r, then
a station at which vocalizations are detected is usually followed
by another, which suggests that m is near 1.0, whereas few
consecutive records of vocalizations suggests that m is low.
More formally, we can estimate m from (Appendix, eq A5):

m̂m ~

1 { Log 1 {
h

1 { p

� �.
Log 1 { p

� �
1 { K

ð3Þ

where K is the proportion of the area covered by listening at a
station that is not covered at another station d units away:

K ~1{2 acos d=2r½ �{ d=2r½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 { d=2rð Þ2
h ir� �

p ð4Þ

and h is the rate that vocalizers are detected at a station but not
at the subsequent station. With known r and estimated m (eq
3), I can estimate density (eq 2; method B).

Similarly, I can estimate r if I know m, because (equating K
from eqs 3 and 4):

1 { 2 acos d=2r½ �{ d=2r½ �
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I can solve numerically for r. With known m and r (eq 5), I
can estimate density (eq 2; method C).

Finally, if I know neither r nor m, a third piece of empirical
information, the rate of hearing individuals at a station but
not at the 2 subsequent stations, q, becomes useful. The
expected value of q is (Appendix, eq A6):

q̂q ~ eam m{Km{2ð Þ 1 { e{am 1{mzKmð ÞzzmK 1{Kð Þ½ �
h i

ð6Þ

I choose a value of K such that, when I use equation 3 to
estimate m, and I enter these values into equation 6, then
they satisfy equation 6. Then, I can estimate r by
numerically solving equation 4 and so obtain an estimate
of density (eq 2; method D).

Testing Methods and Assumptions
To test the ability of methods A–D to estimate density, I
simulated survey data using the package MATLAB (The

Mathworks, Natick, MA). The routine randomly placed
individuals at a density of a per unit area over a study area. It
arranged a sequence of N listening stations spaced at d units
along a linear transect within the study area, all

L

r units
from the boundary. At each station, the routine recorded all
individuals within a radius of r as detected with independent
probabilities m and individuals further than r as not detected.
It kept a record of whether any individual was detected at
each station (not how many individuals were detected). Using
these data, the routine estimated the density of individuals by
the 4 methods: 1) assuming both r and m are known (using eq
2), 2) assuming r (but not m) is known (using eqs 2–4), 3)
assuming m (but not r) is known (using eqs 2 and 5), and 4)
with no knowledge of r and m (using eqs 2, 4, and 6). Setting,
without loss of generality, r 5 10 units, I carried out 100
simulated transects with all combinations of:

a 5 0.01/unit2, 0.001/unit2, 0.0001/unit2 (giving proba-
bilities of having

L

1 individual within audible range at a
listening station of 0.96, 0.27, and 0.03, respectively);
m 5 0.2, 0.4, 0.6, 0.8, 1.0;
d 5 2, 4, 7, 12 units (giving overlap between coverage at

adjacent stations of 87%, 75%, 56%, and 28%, respectively; 1
2 K from eq 4);

N 5 100, 300, 1,000 stations (simulating short, medium,
and long transects, respectively).

Thus there were 14,400 simulated transects. For each
combination of input parameters, I calculated the bias in
each estimate of density, difference between the mean (over
the 100 replicates) estimate of density, â, and its real value
a, as a proportion of a: (â 2 a)/a. I also recorded the
number of simulations in which there was a failure of the
estimation methodology (for instance because of failure to
solve eqs 5 or 6).

The one-dimensional acoustic survey methodology I
developed makes some assumptions. I examined effects of
departures from these assumptions by introducing such
departures into data sets for which the methodologies
otherwise appeared to work well. So, in this part of the
analysis, a 5 0.001, m 5 0.9, d 5 5, r 5 10, and N 5 300. I
made 100 runs with each of the following variations
introduced into the model. 1) The stations were not evenly
spaced, which I modeled by moving each station by a
normally distributed amount with mean zero and standard
deviation 0.2d along the transect line. 2) The range of
audibility varied between individuals, because, for instance,
they had different source levels, which I modeled by having
the range of audibility among individuals varying using a
normal distribution with standard deviation 0.2r (where r is
the mean range of audibility). 3) The range of audibility
varied among stations, because of, for instance, different
background noise or transmission conditions. I modeled this
by having the range of audibility among stations varying
using a normal distribution with standard deviation 0.2r
(where r is the mean range of audibility). 4) The range of
audibility varied for each station–individual pair, because of
combinations of factors such as those considered in 2 and 3
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(above), or directionality in the signal strength for individuals
with changing orientations. I modeled this by having the range
of audibility among station–individual pairs varying using a
normal distribution with standard deviation 0.2r (where r is the
mean range of audibility). 5–6) Densities of individuals were
nonuniform. I modeled 2 variants. In the first (5), density of
individuals increased linearly from zero to twice the mean
density along the transect line. In the second (6), density of
individuals increased linearly from half the mean density to 1.5
times the mean density along the transect line. 7–8) Individuals
avoided one another, which I modeled by allowing no pairs of
individuals to be closer to one another than r (variant 7) or r/2
(variant 8). 9) Individuals were attracted to one another, which
I modeled by allowing no individual to be further from all
other individuals than 5r units. 10) Probability of vocalizing at
different stations was not independent, which I modeled by
giving each individual a different probability of vocalizing.
Probabilities were uniformly distributed between 2m 2 1 and 1,
giving a mean value of m.

If there exists a method of estimating the range to a
vocalizing individual, then conventional (i.e., 2-dimension-
al) distance-sampling surveys (as described by Buckland et
al. 2001), as well as my one-dimensional surveys, are
possible. To obtain an indication of relative efficiencies of
the methods, I used both on simulated data with a 5 0.001,
m 5 1.0, d 5 5, r 5 10, and N 5 300. Unlike the tests for
departures from assumptions, these simulations used m 5

1.0, because conventional distance sampling makes this
assumption [technically, g(0) 5 1]. I made 1,000 simulation
runs both with fixed r, as well as with r varying among
individuals (variant 2 above). For each simulated data set, I
made estimates of density using the one-dimensional
methodology with known m (method C), as well as using
Distance 5.0 software (Thomas et al. 2006). In the latter
analyses, with fixed r the fitted detection function was the
uniform model plus cosine adjustments. For the data sets
produced using variable r both half-normal and hazard-rate
models were fitted with cosine adjustments. I calculated
Akaike’s Information Criterion (AIC) for each and selected
the model with the lower, better AIC (see Buckland et al.
2001). I assumed that perpendicular distances from the
transect line to detected vocalizers were recorded accurately.
In each case the mean deviation from true density (as a
proportion of input density) indicated bias, and the
coefficient of variation of density estimates from different
simulations indicated precision.

To illustrate the use of one-dimensional survey methods, I
used an acoustic transect across the southern Sargasso Sea
between 33u41.59N 57u4.49W (29 Feb 2008, 2000 hr local
time) and 17u8.79N 61u33.99W (7 Mar 2008, 1730 hr local
time) from a 12.5-m sailing vessel. Every half-hour a towed
hydrophone was monitored for about 1 minute and presence
or absence of humpback whale (Megaptera novaeangliae)
song and sperm whale (Physeter macrocephalus) clicks noted.
There were 332 listening stations spaced at a mean of
5.88 km (CV 5 0.16; calculated using Global Positioning
System records).

RESULTS

Limits of Methodologies
The 4 methods had distinctive ranges of effectiveness and
bias (Figs. 1–4, and additional simulations not shown).
Estimation of density using equation 2 when both r and m
were known (method A) was virtually unbiased under any of
the conditions examined (Fig. 1). However, there were a
few problems with high densities of vocalizers and rates of
vocalization when vocalizations were detected at all stations,
which caused equation 2 to produce infinite estimates.
When m, but not r, was unknown and needed to be
estimated (method B), estimation of density had little bias
under the following conditions (Fig. 2): m was not too small
(approx. .0.5), so that individuals within range were usually
detected; d was not too large (approx. ,r), so that there was
a reasonable chance that an individual detected at one
station would be detected at the next; and there was
sufficient information to give a reasonable estimate of h, so
that there were

L

5 consecutive pairs of stations at which
vocalizations were detected and L5 consecutive pairs at
which they were not. The data point in Figure 2 produced
by runs with parameters m 5 0.8, d 5 4, a 5 0.01, N 5 300,
showing a relative bias of about 20.8 seems to be an
anomaly, because I have been unable to replicate this value. In
10 replicates, each with 100 runs, using these parameters,
mean relative biases ranged +0.1 to +0.5. Method C, when m
but not r was known, only seemed to work well consistently at
high m (approx. .0.7; Fig. 3). There was also bias when little
information was available or with close spacing of stations (d
, r/2). With no knowledge of r or m (method D), estimation
of density was only unbiased with d 5 3–8 units (Fig. 4), and
so a spacing of stations of 30–80% of the range of detection.
Given d within this range, there was little bias at high m, but
as m decreased below 0.7, bias increased and the estimation
algorithm was more likely to fail.

I investigated departures from assumptions of the model
on estimates of density using a set of parameters for which
all 4 methods showed little bias when the assumptions held.
Most departures produced little bias in estimates of density
(Table 1), and there were no failures in the estimation
procedure in these runs. However, when stations varied in
their detection range, density was overestimated unless r and
m were known. In contrast, if density varied substantially
between parts of the survey, then the methods, especially
those that estimated r or r and m, underestimated overall
density. When individuals avoided one another, then the
methods, which assume independent positions, overesti-
mated density.

In the comparison between one-dimensional acoustic
survey and conventional 2-dimensional distance sampling,
the one-dimensional survey seemed less biased but also less
precise (Table 2). When I combined bias and precision,
conventional 2-dimensional distance sampling was more
accurate, as would probably be expected given that it uses
more data (precise perpendicular ranges to detected
individuals, rather than presence–absence data at regularly
spaced stations).
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One-Dimensional Survey Using Real Data
We heard humpback whales at 148 of the Sargasso Sea
stations (44.6%). When I assumed m 5 1.0 (method C),
there was no convergence in the estimation of r. Assuming
no knowledge of r and m (method D), r was estimated at
15.7 km (so d/r 5 0.37), m at 0.47, and density at 0.00162
whales/km2. I used the parametric bootstrap to examine bias
and precision in this estimate, carrying out 1,000 simula-
tions (using model variant 1, variable inter-station intervals)
with a 5 0.00162/km2, m 5 0.47, d 5 5.88 km, CV(d) 5

0.16, r 5 15.7 km, and N 5 332. These simulations
suggested that the estimate of density had a coefficient of
variation of about 0.68 and a positive bias of about 23%,
roughly in accordance with model results (Fig. 4). The
estimate of r 5 15.7 km is consistent with previous

estimates of ranges of hydrophone detection of humpback
whale song, 9–32 km (summarized in Norris et al. 1999).

We heard sperm whales at 28 stations (8.4%). Assuming
no knowledge of r and m (method D), the estimates were
r 5 8.8 km, m 5 0.93, and a density of 0.00039 groups of
sperm whales/km2. Parametric bootstrap simulations (as
with the humpback whales) indicated a coefficient of
variation of 0.37 for the estimate of density and a positive
bias of 4%. When I assumed m 5 1.0 and used method C,
estimates were r 5 8.0 km and a density of 0.00044 groups
of sperm whales/km2 (parametric bootstrap CV 5 0.41; bias
of 21%). These estimates of r are remarkably similar to
those of effective strip widths from previous 2-dimensional
acoustic surveys of sperm whales: 8.00 km (Leaper et al.
2000) and 7.99 km (Barlow and Taylor 2005). When

Figure 1. Both rate of vocalization (m) and range of detection (r 5 10 units) known. Mean proportional bias in estimates of density from 100 simulations
[(estimated density 2 actual density) / actual density] plotted against minimum of the number of stations at which vocalizations were detected or not
detected, as an indicator of information provided by the survey. There were no failures in these estimations. Shades indicate the density of vocalizers: black 5

0.01, dark gray 5 0.001, light gray 5 0.0001 (giving approx. proportions of stations at which vocalizers were detected of 0.96, 0.27, and 0.03, respectively).
Dashed lines indicate biases of 10%. Biases of .1.0 are represented as 1.0. d is distance between stations.
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corrected for the mean group size of sperm whales in the
Sargasso Sea, about 12 animals (Gero 2005), the estimated
sperm whale density of 0.0046 km22 is within the range of
those estimated from visual surveys of the species in other
ocean areas (Whitehead 2002, Barlow and Taylor 2005).

DISCUSSION

My simulations suggest that one-dimensional acoustic
surveys can provide estimates of the densities of wild
animals with acceptable levels of bias under some condi-
tions. The less we know, the more restrictive these
conditions become.

Method A.—When both the range of detection and rate
of vocalization were known, then method A seemed to work

well under almost any conditions (except when vocalizations
are detected at all or nearly all the stations) and was little
affected by departures from the assumptions.

Method B.—When the range of detection was known
but the rate of vocalization (m) was not, then method B
produced fairly unbiased estimates except when animals
vocalized less than half the time, the inter-station interval
was greater than the range of detection, or information was
sparse because vocalizations were detected at almost all or
almost none of the stations. When the detection range
varied considerably between stations, a moderate positive
bias was introduced.

Method C.—When the rate of vocalization (m) was
known and greater than about 0.7 but the range of detection

Figure 2. Range of detection known (r 5 10 units). Mean proportional bias in estimates of density from 100 simulations [(estimated density 2 actual
density) / actual density] plotted against the minimum of the number of stations at which vocalizations were detected or not detected following a station at
which vocalizations were detected, as an indicator of the information provided by the survey. Proportion of estimates for which the methodology failed
(because of failure to converge) is indicated by the symbol: ? 5 no errors; o 5 1–9 errors; * 5 10–99 errors; no marker 5 100 errors. Shades indicate density of
vocalizers: black 5 0.01, dark gray 5 0.001, light gray 5 0.0001 (giving approx. proportions of stations at which vocalizers were detected of 0.96, 0.27, and
0.03, respectively). Dashed lines indicate biases of 10%. Biases of .1.0 are represented as 1.0. d is distance between stations and m is rate of vocalization.

1004 The Journal of Wildlife Management N 73(6)



was unknown, then method C produced nearly unbiased
estimates of density when information was sufficient and
stations were separated by at least half the range of
detection. Positive bias was introduced with substantial
variability in the range of detection, and when animals
actively avoided one another.

Method D.—With both the rate of vocalizations and
range of detection to be estimated, stations needed to be
spaced at 30–80% of the range of detection, and method D
only worked consistently when rate of vocalizations was
.0.7. As in Method C, substantial variability in the range of
detection or animals avoiding one another introduced
positive bias.

Thus the methods did seem to be useful in some
circumstances, with the range of applicability being
negatively related to the number of parameters that need
to be estimated. In marginal circumstances, researchers
should check for expected bias using parametric bootstrap
simulation, although this assumes that the model used in the
simulation is correct. The parametric bootstrap indicated
little bias in the sperm whale density estimates and a
moderate positive bias in the humpback density estimate, in
accordance with expectations from the results of model
simulations (Figs. 3, 4).

It is important to recognize that in the models evaluated, I
assumed that probabilities that vocalizations were detected

Figure 3. Rate of vocalization (m) known. Mean proportional bias in estimates of density from 100 simulations [(estimated density 2 actual density) / actual
density] plotted against the minimum of the number of stations at which vocalizations were detected or not detected following a station at which vocalizations
were detected, as an indicator of the information provided by the survey. There were no failures in these estimations. Shades indicate the density of vocalizers:
black 5 0.01, dark gray 5 0.001, light gray 5 0.0001 (giving approx. proportions of stations at which vocalizers were detected of 0.96, 0.27, and 0.03,
respectively). Dashed lines indicate biases of 10%. Biases of .1.0 are represented as 1.0. d is distance between stations. In the simulations, the real range of
detection (r) was 10 units.
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from an individual within detection range were uncorrelated
between successive stations. If animals may remain silent
continuously for the time of passage over a few stations,
then an additional correction should be applied for the
continuously silent animals, in addition to the estimate of m.
The data needed to calculate such a correction will need to
come from a study independent from the survey data.

The one-dimensional survey will be most useful with
vocalizing animals, but it could be used with other modes of
detection. For instance the method might also be useful
with olfactory detection, for which range to the emitter is
generally even harder to determine. The method seems to be
only a little less accurate than conventional distance

sampling when both are practicable. Although it could be
used for visual detection, it is unlikely that it will be favored
over conventional distance sampling with visual cues because
the one-dimensional survey makes additional assumptions
and requires omnidirectional observation around 360u,
which is often not very practicable visually, and visual
detection ranges are usually easily determined using range
finders. Similarly in cases where good range estimates to
vocalizers can be obtained (e.g., from towed hydrophone
arrays in marine acoustic surveys; Lewis et al. 2007) there is
little point in abandoning the many advantages of
conventional distance sampling for a new method that
makes additional assumptions.

Figure 4. Neither rate of vocalization (m) nor range of detection (r) known. Mean proportional bias in estimates of density from 100 simulations [(estimated
density 2 actual density) / actual density] plotted against the minimum of the number of stations at which vocalizations were detected or not detected
following a station at which vocalizations were detected, as an indicator of the information provided by the survey. Proportion of estimates for which the
methodology failed (because of failure to converge) is indicated by the symbol: ? 5 no errors; o 5 1–9 errors; * 5 10–99 errors; no marker 5 100 errors.
Shades indicate density of vocalizers: black 5 0.01, dark gray 5 0.001, light gray 5 0.0001 (giving approx. proportions of stations at which vocalizers were
detected of 0.96, 0.27, and 0.03, respectively). Dashed lines indicate biases of 10%. Biases of .1.0 are represented as 1.0. d is distance between stations. In the
simulations, the real value of r was 10 units.
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However, for some organisms (e.g., some bats, birds, and
cetaceans), and in some circumstances (e.g., night, fog, and
thick vegetation), auditory or olfactory detection is more
effective than sight, and ranges to animals cannot easily be
measured. Although sounds and chemical cues have
frequently been used as indices of abundance, their
conversion into estimates of density or abundance has been
rare, largely because of the challenges of estimating
detection range, a requirement of conventional distance
sampling. My one-dimensional survey methodology gives
the potential for abundance or density to be obtained from
such data, with no additional technical requirements in the
field. The methodology can be applied directly to some
archived data, such as sperm whale acoustic surveys (e.g., as
described by Jaquet and Whitehead 1996), as long as the
inter-station interval is suitable and fairly regular.

In planning future one-dimensional acoustic surveys,
having selected the transect routes (see Buckland et al.
2001), the only important consideration is choosing the
inter-station interval. My simulations suggest that about
half the range of detection is suitable for all versions of the
one-dimensional survey (also the min. inter-station interval
for the technically more complex cartwheels method [which
uses data on bearings to vocalizers] used by Gillespie 1997).

Stations can be subsampled if they turn out to be too closely
spaced.

Sometimes acoustic surveys operate in what is known as
closing mode in which the transect is broken after some
detections to investigate animals (e.g., Barlow and Taylor
2005). Density estimates can usually be made in these cases,
although some care is needed with the denominators in the
calculation of h (proportion of pairs of stations with
vocalizations being detected at the first but not the second)
and q (proportion of trios of stations with vocalizations
being detected at the first but not the second or third). More
serious problems will arise if the probability that the transect
is broken is correlated with the probability that the
vocalizations will be detected at the next station (the station
that will be missed if the transect is broken), for instance in
cases when transects are more often broken when vocaliza-
tions are louder.

No estimate of density or abundance has much value
without some measure of precision and an idea of potential
bias. In general, as with conventional distance sampling, the
best estimates of precision are probably from comparisons of
replicate, randomly or regularly placed transects (see Buck-
land et al. 2001). If the vocalization rate and range of
detection are assumed similar on all transect lines, it is

Table 1. Effects of departures in assumptions of the methodology on the bias in estimates of density. Shown are mean estimates of density in 100 random
runs. True density was 0.001.

Model varianta

Estimated density given

Known r and m Known r, estimate m Known m, estimate r Estimated r and m
(method A) (method B) (method C) (method D)

Standard 0.00100 0.00100 0.00100 0.00106

a) Variable d (SD 5 20%d) 0.00099 0.00100 0.00102 0.00107
b) Variable r (SD 5 20%r) by

individual 0.00104 0.00103 0.00097 0.00101
c) Variable r (SD 5 20%r) by

station 0.00104 0.00114 0.00147 0.00129
d) Variable r (SD 5 20%r) by

individual/station pair 0.00105 0.00112 0.00137 0.00127
e) Increasing density along

transect (from 0 to 2a) 0.00096 0.00092 0.00078 0.00078
f) Increasing density along

transect (from 0.5a to 1.5a) 0.00098 0.00097 0.00096 0.00099
g) Individuals separated by .r 0.00104 0.00107 0.00120 0.00119
h) Individuals separated by .r/2 0.00102 0.00103 0.00105 0.00111
i) No individual isolated by .5r 0.00100 0.00100 0.00099 0.00107
j) Individual-specific m 0.00099 0.00099 0.00102 0.00109

a r is the range of detection, d the interstation separation, and a the mean density.

Table 2. Mean bias (proportional deviation from true mean), precision (CV among estimates from different simulated data sets), and overall root-mean-
square (RMS; square root of sum of squares of bias and precision) error for one-dimensional (method C) and 2-dimensional (using conventional distance-
sampling) surveys of the same 1,000 simulated data sets.

Form of simulationa One-dimensional surveys 2-dimensional surveys

Proportional bias Fixed r +0.027 +0.039
Variable r +0.010 +0.085

Precision (CV) Fixed r 0.276 0.224
Variable r 0.283 0.250

Overall error (RMS) Fixed r 0.277 0.227
Variable r 0.283 0.264

a r is the range of detection.

Whitehead N One-Dimensional Surveys 1007



probably optimal to make weighted averages of estimates of
r and m obtained for each transect line (using eqs 3–6) and
then use these weighted averages to estimate density for
each transect line (using eq 2).

An alternative method of estimating precision is the
parametric bootstrap used above for the Sargasso transects,
although it makes more assumptions. The parametric
bootstrap also provides an estimate of bias that will be useful,
especially when the technique is used close to the limits of its
validity (as with the humpback whale estimate above).

Compared with the detailed development applied to
distance-sampling methodology (e.g., Buckland et al.
2004), the simple analytical approximations I suggest are
primitive. Although they seemed to work well in appropriate
conditions, their performance, and especially their range of
applicability, can undoubtedly be improved. Likelihood
methods will almost certainly give better estimators of
parameters and will allow relaxation of some assumptions.
Likelihood methods may also use more of the data, if
likelihood of the entire sequence station results (detected or
not detected) can be calculated for a range of models and
parameters. With likelihoods calculated, AIC or related
measures will indicate the most appropriate model (Burn-
ham and Anderson 2002). Bayesian techniques (Clark 2005)
may be especially appropriate because often there will be
useful prior knowledge about range of detectability (r), rate
of vocalization (m), and density. Incorporating this infor-
mation using Bayesian methodology will improve estimates.
Many of the other developments of conventional distance
sampling including covariate models, temporal inferences,
and spatial methods, could be applied to one-dimensional
surveys (Buckland et al. 2004).

MANAGEMENT IMPLICATIONS

To assess status of wildlife populations and manage human
impacts, we need estimates of absolute abundance. Absolute
abundance is a prerequisite for assessment of the likelihood
of stochastic extirpation, for assessment of the reduction of
genetic diversity through the bottleneck effect, and to set
removal quotas. For instance, 2 of the 5 International Union
for Conservation of Nature criteria for Critically Endan-
gered, Endangered, and Vulnerable species explicitly require
absolute population estimates rather than trend data
(International Union for Conservation of Nature 2008).
Species that are hard to view because of their habitats or
habits often lack absolute abundance estimates because of
the difficulty of assessing range, and thus applying distance
methods, when detection of individuals in surveys is not
visual. The methods I developed give absolute estimates of
abundance from some surveys in which ranges to detected
individuals are not available. These methods will be
particularly useful for species in which individuals are
detected acoustically and may also be effective when
detection is by chemical, or possibly electrical, signals.
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APPENDIX: ESTIMATING m AND r
FROM SEQUENCE DATA

K is the proportion of the area covered by listening at a station
that was not covered by the listening at the previous, or
subsequent, station. Then the probability that there are no
new individuals detected at a station (i.e., individuals who
were not within detection range of the previous station) is

e{aKm ðA1Þ

where a 5 apr2, the mean number of individuals expected to
be detected at a station.
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If x individuals are within detection range at the first
station (present, not necessarily detected), then the proba-
bility that none of them are detected at the second is

~ K z 1 { Kð Þ 1 { mð Þ½ �x

~ 1 { m z Km½ �x ðA2Þ

The probability that if x individuals are within detection
range at the first station and

L

1 are detected is

~ 1 { 1 { mð Þx ðA3Þ

Then, using the Poisson distribution, the probability that x
individuals are within detection range at the first station is

~ 1 { 1 { mð Þx½ �:ax:e{a=x! ðA4Þ

Putting equations A1, A2, and A4 together, the probability
that x individuals are within detection range at a station but
no vocalizations were detected at the following station, is

~ e{aKm: 1 { m z Km½ �x: 1 { 1 { mð Þx½ �:ax:e{a
�

x!

Then, summing this over x, the probability that vocaliza-
tions are detected at a station but not at the following
station is

h ~ e{aKm:
X

x
1 { m z Km½ �x: 1 { 1 { mð Þx½ �:ax:e{a=x!

h ~ e{aKm:e{a: e 1{mzKmð Þa { e 1{mzKmð Þa 1{mð Þ
h i

h ~ e{a Kmz1{1zm{Kmð Þ: 1 { e{ 1{mzKmð Þam
h i

h ~ e{am: 1 { e{ 1{mzKmð Þam
h i

So:

h ~ 1 { p
� �

: 1 { 1 { p
� � 1{mzKmð Þ

h i

where p is probability vocalizations are detected at a station
(p 5 1 2 e2am; from eq 1). Rearranging gives

1 { m z Km ~ Log 1 {
h

1 { p

� �
Log 1 { p

� �

and so

m ~

1 { Log 1 {
h

1{p

� �.
Log 1 { p

� �
1 { K

ðA5Þ

This can be used to estimate m.
Next consider sequences of 3 stations with vocalizations

detected at the first (S1) but not the second (S2) or third
(S3). Let q9(x,y,z) 5 (Probability x animals within detection
range at S1) 3 (Probability

L

1 of x detected at S1) 3

(Probability y of the x were within detection range at S2) 3

(Probability z new individuals were within detection range
at S2) 3 (Probability none of y + z were detected at S2) 3

(Probability none of y + z were detected at S3) 3

(Probability no new individuals were detected at S3):

q’ x, y, z
� �

~
ax:e{a

x!
: 1 { 1 { mð Þx½ �

: 1 { Kð Þy:K x{y:xCy:
Kað Þz:e{Ka

z!
: 1 { mð Þyzz: 1 { m z Km½ �yzz:e{aKm

The terms of this expression come, respectively, from the
Poisson distribution with parameter a, equation A3, the
binomial distribution with parameter K, the Poisson
distribution with parameter Ka, the binomial distribution
with parameter 1 2 m, equation A2, and equation A1. Then
the probability that vocalizations were detected at S1 but not
S2 or S3 is:

q ~
X

x

X
y

X
z

q0 x, y, z
� �

q ~
X

x

X
y

ax:e{a

x!
: 1 { 1 { mð Þx½ �: 1 { Kð Þy:K x{y

:xCy: 1 { mð Þy: 1 { m z Km½ �y:e{Ka

:eKa 1{mð Þ: 1{mzKmð Þ:e{aKm

q ~
X

x

ax:e{a

x!
: 1 { 1 { mð Þx½ �: K z 1 { Kð Þ: 1 { mð Þ½

: 1 { m z Kmð Þ�x:eKa 1{mð Þ: 1{mzKmð Þ{1{m½ �

q ~ e{azKa 1{mð Þ: 1{mzKmð Þ{1{m½ �
X

x

ax

x!

: 1 { 1 { mð Þx½ �: 1 { m z Kmð Þ2 z mK 1 { Kð Þ
h ix

q ~ e{azKa 1{mð Þ: 1{mzKmð Þ{1{m½ �

: ea 1{mzKmð ÞzzmK 1{Kð Þ½ �
h

{ ea 1{mð Þ 1{mzKmð ÞzzmK 1{Kð Þ½ �
i

q ~ ea {1zK 1{mð Þ: 1{mzKmð Þ{1{m½ �z 1{mzKmð ÞzzmK 1{Kð Þ½ �f g

: 1 { e{am 1{mzKmð ÞzzmK 1{Kð Þ½ �
h i

q ~ eam m{Km{2ð Þ: 1 { e{am 1{mzKmð ÞzzmK 1{Kð Þ½ �
h i ðA6Þ
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