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Canada 

ABSTRACT 

A common task for researchers of animal vocalisations is statistically comparing 
repertoires, or sets of vocalisations. We evaluated five methods of comparing 
repertoires of 'codas', short repeated patterns of clicks, recorded from sperm whale 
(Physeter macrocephalus) groups. Three of the methods involved classification of codas 
- human observer classification, k-means cluster analysis using Calinski and 
Harabasz's ( 197 4) criterion to determine k, and a divisive k-means clustering 
procedure using Duda and Hart's (1973) criterion to determine k. Two other methods 
used multivariate distances to calculate similarity measures between coda repertoires. 
When used on a sample coda dataset, observer classification failed to produce 
consistent results. Calinski and Harabasz's criterion did not provide a clear signal for 
determining the number of coda classes (k). Divisive clustering using Duda and Hart's 
criterion performed satisfactorily and, encouragingly, gave similar results to the 
multivariate similarity measures when used on our data. However, the relative 
performance of the k-means techniques is likely data dependent, so one method is not 
likely to perform best in all circumstances. Thus results should be checked to ensure 
they extract logical clusters. Using these techniques concurrently with multivariate 
measures allows the drawing of relatively robust conclusions about repertoire 
similarity while minimising uncertainties due to questionable validity of 
classifications. 
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INTRODUCTION 

In the study of animal vocalisations, the problem of objectively 
defining categories and statistically comparing repertoires between 
individuals or sets of animals is perennial (see for example Janik 
(1999); Nowicki & Nelson (1990); Terhune et al. (1993)). Here we 
describe and compare a number of methods that we have developed to 
study the repertoires of 'coda' vocalisations in sperm whale (Physeter 
macrocephalus) social groups. Codas are repeated stereotyped 
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sequences of 3-40 broadband (0-16 kHz) clicks generally heard during 
periods of socialising (Watkins & Schevill 1977). Sperm whale groups 
consisting of females, calves and immature animals of both sexes are 
encountered in sub-tropical and tropical waters. Codas are generally 
heard from these groups during periods of apparently social behaviour 
at or near the surface, behaviour that contrasts sharply with the 
prolonged dives and wide spacing of foraging groups (Whitehead and 
Weilgart 1991). 

Only a handful of studies have been made of these vocalisations 
to date (Moore et al. 1993; Watkins & Schevill 1977; Weilgart & 
Whitehead 1993, 1997; Whitehead et al. 1998), and none evaluated the 
analytical methods they used. Initially codas were assigned to classes 
by simple observation and judgement (e.g. Moore et al. 1993; Watkins 
& Schevill 1977); the underlying assumption that the classes were real 
and meaningful to the animals themselves was suggested by the 
extreme stereotypy of the coda patterns. More recently, Weilgart & 
Whitehead (1997) used k-means cluster analysis. Both these methods 
come with pitfalls. The human 'eyeball' method contains two 
assumptions: that what seems different to us is actually different to 
the animals, and that what seems different to one person will also 
seem different to another observer. The former is rarely tested in 
animal bioacoustics and certainly has not been for sperm whales, 
while the latter is testable (Janik 1999) and must be met if the 
essential scientific criterion of repeatability is to be fulfilled. The k­
means cluster analysis used by Weilgart & Whitehead (1997), for all 
its numerical objectivity, comes with th~ problem of determining k -
the number of clusters into which the data are to be grouped. Weilgart 
& Whitehead (1997) used a fixed number of clusters (5 for 3-click codas 
and 10 for >3 click codas) and then lumped all clusters with less than 
50 codas into a catch-all 'variable' category. They then compared 
numbers of codas in each class between different social groups. While 
objective, this methodology obviously discards potentially interesting 
information in the form of rarer coda classes. 

Both classification-based methods, while making data easier to 
understand given our aptitude for categorisation (Tomasello 1999, 
pp.17-18), carry the underlying assumption that real 'types' are 
present. However, this is not necessarily the case for other species. In 
cetaceans, for example, Murray et al. (1998) showed that the calls of 
false killer whales Pseudorca crassidens form a graded sequence with 
no clear divisions. Similarly, pilot whale Globicephala melas whistles 
appear to form a graded continuum between several basic types 
(Taruski 1979). We can use empirical cues to justify a decision to 
classify - for example if calls are stereotyped with few or no 
intermediate forms. However, if methods of comparing sets of 
vocalisations that do not rely on classification are available then one 
can employ both classification and non-classification approaches in 
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tandem for a rigorous investigation; conclusions supported by analyses 
using both approaches are concomitantly stronger. Here we explore 
methods of classifying codas and of comparing repertoires using 
classification as well as non-categorical methods. 

METHODS 

Data collection 

In this study we used a subset of codas recorded from field studies 
around the Galapagos Islands. For general field methodology see 
Whitehead & Weilgart (2000). Codas were recorded using one of two 
sets of equipment. The first was an Offshore Acoustics hydrophone 
(frequency response: 6Hz-10kHz ±3 dB) connected to a Sony TC-D5M 
cassette recorder, used for the 1999 recordings of social unit "T"; the 
second consisted of a Benthos AQ17 hydrophone (1-10kHz), connected 
via either Barcus-Berry 'Standard' or Ithaca 453 pre-amplifiers to 
either a Uher 4000, Sony TC770 or Nagra IV-SJ recorder, used for the 
1985 and 1987 recordings of social units "A" and "B". Recordings were 
digitised at 44.1 kHz onto a standard desktop PC, and we analysed 
codas using a software package called Rainbow Click (Gillespie 1997; 
Leaper et al. 2000) specifically developed for the study of sperm whale 
sounds (e.g. Jaquet et al. 2001). The software detects clicks using a two 
level trigger with user-variable parameters and then stores the 
detected clicks in a data file. The timing of clicks within codas can then 
be extracted once codas have been defined and marked individually by 
the user. Only codas that could be unambiguously heard (at the 
various playback speeds supported by the software) were marked, so 
some codas that were recorded were not analysed due to a variety of 
factors leading to a generally poor recording quality (these included 
water noise, engine noise and overlapping by other clicks and codas). 
The resultant data for each coda were the absolute inter-click 
intervals, defined as the time between the onsets of consecutive clicks, 
so for example a four click coda that we analysed was stored as 0.180, 
0.178, 0.182 (units are seconds). These data were then standardised to 
coda length by dividing each interval by the total length of the coda 
(defined as the time between the onsets of the first and last clicks). 
This was done because previous work has shown coda rhythm to be 
better preserved than tempo (Moore et al. 1993) and so most work on 
codas discards tempo information (e.g. Weilgart & Whitehead 1997). It 
is therefore an assumption of this paper and the methods we describe 
that it is the rhythm of clicks within a coda and not the tempo that is 
biologically important and thus of interest. For the present analysis 
we used a sample of 1548 codas from our database of analysed 
codas (Table 1) that were assigned to social units based on the 
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presence of photographically identified individual whales (Christal et 
al. 1998). 

Observer classification 

Janik (1999, 2000) has shown that human classification, with all its 
pitfalls of arbitrariness, is still the best way to classify bottlenose 
dolphin (Tursiops sp.) signature whistle contours. We therefore 
emulated his methods by using three people (one of us - LER- and 
two volunteers) to independently classify codas. Each observer was 
presented with a computer display of the coda to be classified (on a 
standardised scale so that tempo information was discarded for this 
method as well) and assigned codas classes as they saw fit based on 
their perception of the classes present in the dataset. There was no 
limit on the number of classes, and at any point observers could view 
the mean of any already existing class as well as a display of the 
current coda alongside all the other codas with the same number of 
clicks in the analysis set. For this method we used only the 879 codas 
from social unit T, in order to keep the task manageable. Once all 
three independent classifications were complete, the results were 
scanned for common classes and if two or more observers agreed on a 
class for a given coda then it was assigned to that class, while if there 
was no agreement then the coda was dropped from further analysis. If 
significant proportions of codas are rejected on this basis then it 
becomes clear that this methodology is not as applicable to sperm 
whale codas as to bottlenose dolphin whistles. Such levels of rejection 
may also suggest that perhaps coda types are not as discrete as once 
thought. 

TABLE 1 

Data used in this study. Social unit codes correspond to those in Christal et al. 
(1998) and Christal & Whitehead (2001) 

Social Unit Number of Dates recorded Number 
Code recordings (first - last) of codas 

A 25 24 February 1985 - 9 March 1987 572 
B 9 23 January 1987 - 22 March 1987 97 
T 22 10 March 1999- 10 April 1999 879 

Total: 1548 
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K-means clustering 

Using automatic classification algorithms avoids the problems of 
subjectivity inherent when humans classify codas. Weilgart & 
Whitehead (1997) used k-means clustering, where data are divided 
into k clusters so as to minimise the pooled within-cluster sum of 
squares. Such analysis has to treat codas with differing numbers of 
clicks separately - i.e. four-click codas will be clustered in a separate 
analysis from five-click codas. This is because four- and five-click codas 
represent multivariate datasets with different numbers of dimensions, 
in this case three and four dimensions, since an n click coda can be 
represented by n-1 standardised click intervals. While codas can 
theoretically be represented by n-2 standardised intervals (since all 
intervals must sum to one) this biases distance measures to emphasise 
differences that occur in the first n-2 intervals over differences in the 
last interval, so we included all n-1 intervals in our analyses. However, 
the problem of deciding k non-arbitrarily remains. Weilgart & 
Whitehead ( 1997), as noted above, adopted a technique that involved 
discarding some potentially important information. Schreer et al. 
(1998) attempted to use a 'stopping rule' based on Calinski & 
Harabasz's (1974) Variance Ratio Criterion (VRC). Although they 
found it unsatisfactory for their data, we too tried this stopping rule 
based on the VRC: 

VRC = BGSS jWGSS 
k-1 ~~-k (1) 

where BGSS and WGSS are the between and within group sum of 
squares respectively, k is the number of clusters and n is the number 
of observations. We ran an iterative k-means clustering algorithm on 
each coda size ( 4 click, 5 click etc) for 2 ::; k ::; 10. In this and all the 
k-means analyses that we ran, initial cluster centroids were selected 
at random from the input data. Since the iterative k-means algorithm 
does not necessarily always converge on the optimal solution, each 
clustering was run 10 times and the solution with the lowest WGSS 
selected and retained. We then calculated the VRC for each solution. 
Calinski & Harabasz (1974) suggest that the optimal clustering 
solution is at the first local maximum of the VRC as k increases. 
However, as we shall show later, we encountered the same problem as 
Schreer et al. (1998): the VRC did not give clear, unambiguous results 
for our test data. In Milligan & Cooper's (1985) comparison of stopping 
rules, the VRC rule performed best at detecting the number of clusters 
in sample datasets. However, their sample data were very strongly 
clustered, and these authors openly attempted to let every stopping 
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rule 'adopt the most favourable conditions' to optimise its performance 
while cautioning that their 'findings are likely to be somewhat data 
dependent'. Hence, we also tried the rule that performed next best 
after the VRC: Duda and Hart's (1973; pp.239-243) ratio criterion. This 
criterion tests the null hypothesis that the partitioning of a given 
dataset into two clusters is spurious at the p-percent level, and rejects 
that null hypothesis if 

WGSS<2l 2 2(1-8/n
2m) 

---'-=<1---a 
TSS nm nm 

(2) 

where TSS is the summed squared deviation from the mean for the 
unclustered data, WGSS(2l is the pooled within-cluster sum of squares 
for the same data in two clusters (J/1) and J/2) respectively in Duda 
& Hart's (1973) notation), m is the number of dimensions in the data, 
n is the number of observations and a is a standard normal score given 
by 

p = 10oJ=_1_e-1/2u2 8u 
a -J2ii (3) 

This measure compares the reduction in the squared error, as 
given by the ratio WGSS< 2/TSS, against the distribution of reductions 
expected from dividing a multivariate normal population through the 
mean. Note that the method only makes decisions about dividing a 
given set into two clusters. This gives it one major heuristic advantage 
over the VRC method in that it provides a basis for deciding whether 
any clustering at all is justified, i.e. the first split of the original data 
into two clusters. We used this criterion in a divisive procedure, in 
contrast to the VRC method, which seeks globally optimal solutions for 
the entire dataset. Data were repeatedly split using iterative k-means 
with k = 2 (repeated 10 times, selecting the lowest WGSS solution, as 
above). Each split was then accepted or rejected with p = 95%, and the 
resultant clusters again split and tested. Division continued until no 
cluster could be split according to the WGSS< 2/TSS criterion. 

Once we had arrived at two classifications based on human and 
divisive k-means methods (the latter were performed on the expanded 
dataset of 1548 codas), we compared the human classification (of codas 
on which at least two observers had agreed) with the k-means 
classification of those same codas using Cramer's V (Wilkinson et al. 
1996). While this metric does not provide for any kind of significance 
testing, it does give a relative measure of how well two classifications 
coincide. We also calculated Cramer's V for each individual human 
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against each other, against the 'consensus' human classification and 
against the k-means classification. 

Classification-free approach 

One obvious way to compare codas without resorting to classification 
is by using distances between codas in multivariate space. We tested 
two different ways of measuring distances between vectors 
representing points in multivariate space: Euclidean distance and the 
infinity-norm. The Euclidean distance (dEi) between codas i and j is 
defined as 

c 

dEij = I, ( xik - x Jk? 
k=l 

(4) 

where c is the number of standardised click intervals representing 
codas i and j (i.e. the number of clicks minus one), xik is the kth 
interval of coda i and x k is the kth interval of coda}. The infinity-norm 
distance (dl. .) is define'd as the maximum absolute difference between 
the vectors ~~i and x (sometimes written as JJxi - x JJoo). Both these 
metrics are direct m~asures of how dissimilar codas /and} are (i.e. low 
values mean that codas i and j are nearly identical in pattern). 
However, both can in theory lead to results that appear counter to our 
stated aim of comparing coda rhythms. In the case of Euclidean 
distance, consider a regular five-click coda (5R): perturbing all the 
clicks by some small amount (x) results in a slightly irregular coda 
that still has a generally regular rhythm, while perturbing a single 
click by a large amount (y) gives a distinctly different rhythm (such as 
4+1). However, the codas resulting from these perturbations could 
have very similar Euclidean distances from the original if x ""Yf-i(n-ll' 

where n is the number of clicks (in this case five), despite having quite 
different rhythms. In the case of the infinity-norm distance, consider 
again a 5R coda, again perturbing one of the clicks by some amount (y) 
to produce, for example, a 4+1 rhythm. Then consider perturbing two 
of the original five regular clicks by a smaller amount (x) to produce, 
for example, a 3+1+1 rhythm. If y > x then the 3+1+1 coda will have 
a smaller distance from the original 5R than the 4+1, even though a 
3+ 1 + 1 rhythm is arguably less similar to 5R than is a 4+ 1 rhythm. 
Thus neither metric always directly quantifies rhythmic differences in 
a consistent way. Whether these situations are occurring enough to 
significantly impact on results depends on the actual codas. One way 
to test whether these theoretical problems have a significant impact on 
results is to use both on the same data - if the two techniques produce 
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similar patterns of results, then it is unlikely that the theoretical 
conditions outlined above are occurring much in practice. 

The above metrics reflect the differences between pairs of codas, 
but we are interested in comparing sets, or repertoires, of codas. One 
measure of how dissimilar any one repertoire of codas is from another 
is the mean distance defined as the average of pairwise distances 
between the two repertoires. That is, for each coda in repertoire A, 
calculate the distance to all other codas in repertoire B, and take the 
mean of all the resultant values (size of repertoire A x size of 
repertoire B), or more formally, 

(5) 

where nA and nB are the number of codas in repertoire A and B 
respectively and dij can be either the Euclidean or infinity-norm 
distance. However, we cannot use this directly, because repertoires 
contain codas of differing sizes, that is, codas with different numbers 
of clicks - it is thus impossible to measure a direct multivariate 
distance between them. One could overcome this by simply taking the 
mean of all the distances between codas of the same size, but this 
would not take into the account the differences in numbers of codas of 
different sizes between the repertoires. Using distances, comparisons 
between codas with different sizes could be set to an arbitrarily high 
number, but then average distances would depend more on the 
arbitrary value of this number than any other factor. Alternatively, 
one can use similarity scores that are inversely proportional to 
distance; for example, b/(b + di ) is a measure of similarity, where the 
value of b relative to the spread of data gives the approximate 
resolution at which the measure operates. If comparisons are 
expressed as similarities rather than distances, then comparisons 
between codas of different sizes can be simply set to zero. We took this 
approach, rendering every comparison between codas of different sizes 
zero, and then took the mean of all comparisons (not only those 
between codas of the same size). Equation (5) thus becomes 

(6) 
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where l is the number of clicks in coda i of repertoire A and l. is the 
number' of clicks in coda j of repertoire B. 

1 

Using this approach, a repertoire can also be compared with 
itself; if A=B then equation (6) gives S AA' the self-similarity. This is 
important because, unlike most similarity measures, the results of 
comparing a repertoire with itself using equation (6) are not readily 
predictable. Equation (6) does not produce 1 when repertoires are 
compared with themselves, instead it gives an approximate indication 
of the 'spread' or diversity of a given repertoire; relatively compact 
repertoires will have relatively high self-similarities. For this work 
however, the clear implication is that values of S AB for between­
repertoire comparisons should be interpreted alongside the values of 
S AA and S BB calculated when those repertoires are compared to 
themselves, unless large numbers of comparisons are being made in 
which case it would be more tractable to enter the similarity measures 
into a hierarchical cluster analysis. 

We calculated comparisons between repertoires of codas 
recorded from different social units so as to compare the results from 
this technique with results from correlating classified codas as 
described in the previous section. We used equation (6) with both 
distance metrics, and b = 0.001, 0.01, 0.1 and 1, to look at how the 
different metrics and different values of b change the similarity 
results. We also compared repertoires using the results of the 
classification methods by calculating Spearman rank correlation 
coefficients on counts of how many codas of each type were heard in 
each repertoire (as in Weilgart & Whitehead 1997). When comparing 
repertoires between social units using both similarity and 
classification methods, we estimated the robustness of each measure 
by calculating bootstrap standard errors from 100 random samples 
with replacement (Sokal & Rohlf 1995). All the numerical procedures 
described here were implemented in MATLAB (v12.0; we encourage 
interested researchers to contact us for copies of the MATLAB 
routines), with the exception of Cramer's V which was calculated in 
SYSTAT (v10), on a standard PC. 

RESULTS 

Observer and k-means classification 

After classification by three people, 861 of 879 codas (98.0%) from 
social unit T met the consensus criteria of agreement by at least two 
observers, and were classified into 49 types. 85% of the codas recorded 
had 6 or less clicks, and while the 8 most common types account for 
82.1% of the repertoire (the single most common type accounting for 
19.9%, approximately 115 of all the codas heard), there were many rare 
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types - 36 of the 49 types individually made up less than 1% of the 
codas recorded. 

As we mentioned above, the VRC stopping rule did not give 
unambiguous results (Figure 1); VRC values for various k did not show 
unambiguous local maxima as described in Calinski & Harabasz 
(1974). The divisive procedure, which runs unsupervised and does not 
require any input apart from the initial acceptance threshold (p) for 
the Duda and Hart criterion, produced 32 clusters from the entire 1548 
coda dataset. Here the most common type accounted for 11% of codas 
recorded, the 8 most common types for 45%, and 21 types individually 
made up less than 1% of the codas recorded. Generally, the divisive 
method produced clusters that match reasonably with observable 
clumping of the data (Figure 2). 

Cramer's V statistics for each combination of classifications are 
given in Table 2. It is noteworthy that all three human observers 
individually produced results more similar to the k-means procedure 
than to any of the other observers. To illustrate how this relates to the 
actual data, Figure 3 compares the classification of codas with four 
clicks by the k-means and observer consensus methods. Note both the 
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Figure 1. Variance Ratio Criterion values from k-means solutions for 2 :::; k :::; 10, 
calculated using codas with 3-6 clicks. Note the lack of clear local maxima. 
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Figure 2. Results of divisive k-means clustering using the Duda and Hart 
criterion. For 3 click codas, the plot shows frequency distribution of the first 
standardised click interval (SCI), with different clusters having different 
shaded bars. For 4 click codas, the first SCI is plotted against the second SCI. 
All the other plots show the first two principal components derived from SCis, 
along with the percent variance accounted for by those first two principal 
components. Different clusters are represented by different symbols. 

TABLE 2 

Cramer's V, for each combination of classifications. Observer A, B and C are 
individual classifications, Human-All is the consensus and K-means the results of 

the divisive k-means procedure. Higher values represent a relatively higher 
correspondence between classifications. 

K-means 
Human- All 
Human- A 
Human- B 
Human- C 

K-means 

0.95 
0.95 
0.93 
0.96 

Human- All 

0.95 
0.96 
0.91 

Human- A 

0.91 
0.88 

Human- B 

0.87 
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clear structuring of the data in the plot, and also how the '4R' type in 
the observer classification considerably overlaps the '3+1' cluster, 
while the k-means results produce (not surprisingly) relatively well­
separated clusters. 

Multivariate similarity 

Figures 4a and 4b show the results of employing the similarity 
measures to compare repertoires between social units, using Euclidean 
and infinity-norm distances respectively, and for a range of b. The 
results are plotted along with the self-similarity scores for each 
repertoire. We would consider any result where the comparison value 

K-means clustering 

0.5 
0 

+ +~~0 + }" 
+ 0 <Q 8 * 0 

0.25 IT]] 2 

0.1 0.2 0.3 0.4 

Human consensus 

0.5 
+ 

+ +~·j + 
0 '2+2' 

€} • + '3+1' 
0.25 • '4R' 

... '48' 

0.1 0.2 0.3 0.4 

Figure 3. First SCI plotted against the second SCI for all four click codas from 
social unit T, plotted by cluster membership as determined by divisive k-means 
or human consensus classification. 
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Figure 4. Repertoire similarities calculated between social units for various 
values of b. Each dotted line joins the comparison similarity to self-similarity 
values for both social units in the comparison- for example the leftmost line in 
each plot joins the self-similarity of unit A, the comparison similarity between A 
and B and the self-similarity of B. Error bars are standard errors from 100 
bootstrap samples. 

(a) Similarities calculated using the Euclidean distance. 
(b) Similarities calculated using the infinity-norm distance. 
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lay in the bootstrap standard error range of the two self-similarity 
values to indicate that the two repertoires were statistically 
indistinguishable (at the resolution set by the value of b). The pattern 
of results is identical for both distance metrics and for all values of b: 
the repertoires of social units A and B are more similar to each other 
than either are to unit T, although when using Euclidean distance 
with higher values of b the repertoires of A and B are 
indistinguishable. This pattern agrees well with comparisons using 
correlations between repertoires of codas classified using the divisive 
k-means method, where the correlation between A and B are higher 
than either with T (Figure 5). To show how these results reflect the 
true nature of the underlying data, Figures 6a and 6b show plots of 
three to ten-click codas for social units A and B, and A and T 
respectively. It is clear from these plots that the repertoires of A and 
B overlap each other considerably. In contrast, while there is some 
overlap between A and T, there are also clear areas of non-overlap, 
particularly with four, five, and six click codas. 

0.8.-----~--------------~------------~------~ 

I 

0.4 I 

0~----~--------------~------------~------~ AvB AvT BvT 

Figure 5. Spearman correlation coefficients for comparisons between repertoires 
of codas classified by divisive k-means, calculated as in Weilgart & Whitehead 
(1997). Error bars show standard errors from 100 bootstrap samples. 
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Figure 6. Plots comparing coda repertoires between social units. For 3 click 
codas, the plot shows frequency distribution of the first standardised click 
interval (SCI). For 4 click codas, first SCI is plotted against the second SCI. All 
the other plots show the first two principal components derived from SCis, along 
with the percent variance accounted for by those first two principal components. 

(a) Unit A(+, shaded bars) and unit B (o, clear bars). 
(b) Unit A ( +, shaded bars) and unit T (o, clear bars). 
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DISCUSSION 

Of the methods that we implemented or attempted to implement 
(observer classification, VRC k-means, divisive k-means using the 
Duda and Hart criterion, and multivariate similarity), only the latter 
three are likely to be useful in future studies of sperm whale codas. 
While observer classification has been shown to work rather well for 
other cetacean vocal studies (Janik 1999, 2000), it is apparently not so 
useful for studying sperm whale codas, for several reasons. Firstly and 
most importantly, humans did not pick out the naturally occurring 
groupings in the data as well as divisive k-means method. For 
example, the human defined classes stretch across the two main 
clusters evident in the four-click codas (Figure 3). Secondly, the 
Cramer's V results for the classifications show that the human 
classifications were inconsistent with respect to each other, suggesting 
that the repeatability of these measures would not be especially 
robust. If the acceptance criteria were raised to require agreement 
from all three observers, only 34% of the codas would be accepted, 
which casts further doubt on the robustness of the technique. We can 
only speculate as to why this might be so, but one possible reason 
might be the large amounts of data used here: we asked humans to 
classify 879 codas, while Janik (1999) used only 104 bottlenose dolphin 
(Tursiops sp.) signature whistles in his study. Remembering one's 
previous classifications is likely much easier for smaller datasets, 
particularly since Janik (1999) also printed hard copies of each whistle 
spectrogram for the comparison exercise, something which was 
unfeasible for the 879 codas we used here and more so for the larger 
datasets we would like to use these methods on in future. Finally, the 
observer classification method also involved the rejection of an albeit 
small number of codas; we cannot justify throwing away information 
in this way given the difficulty and expense of making these recordings 
in the first place, nor given the possibility of introducing bias if 
classifiers are more likely to disagree over certain forms of coda than 
others. Hence we do not see observer classification as a useful method 
in this particular case. 

We do think that some form of classification is justified, given 
the structure present in the data (Figures 2, 3 and 6)- there do seem 
to be some very tightly defined coda 'types'. Both the k-means methods 
potentially provide a robust method for classifying codas that will 
produce repeatable results. However, the VRC stopping rule did not 
seem to work well here: while it performs excellently with well-defined 
clusters (Milligan & Cooper 1985), we found that the rule produced 
ambiguous results for our test data. In contrast, the divisive k-means 
method assigned data to clusters that matched the structuring of the 
dataset quite well (Figure 2). In addition, comparisons between the 
three social units based on this classification produced results that 
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make sense with respect to the underlying data (Figure 6). While this 
latter technique is clearly better in this case, we would add the caveat 
that it might not always be better. As Milligan & Cooper (1985) point 
out, the performance of any such criterion is very likely to be data 
dependent, and while it appears that for the present data the VRC 
rule is not the most appropriate, this may not always be so. For 
example, a dataset with several clear clusters may not produce a 
significant difference in Duda and Hart's ratio criterion on the first 
split into just two groups, and thus the split may be rejected even 
though clustering is obviously present to a human observer. We 
therefore suggest that the results of both techniques be checked 
against the raw data to ensure that logical clusters are being 
retrieved. The ultimate choice of technique will be data dependent and 
somewhat arbitrary, based on an observer's judgement of how well the 
clustering solution fits the data. One disadvantage with these 
clustering methods is that care must be taken with the ad hoc addition 
of new data. One could classify new data using Mahalanobis or 
Euclidean distances to assign new codas to the cluster with the 
nearest centroid, but only for small amounts of new data. Visual 
inspection (e.g. as in Figure 2) would be necessary to ensure that new, 
very different, codas were not being 'forced' into existing categories, 
and the entire procedure should be run again if large amounts of new 
data, or data very different from that used for the original clustering, 
are added. While there are many other clustering algorithms 
available, as well as more recent developments in artificial neural 
networks (see e.g. Deecke et al. 2000) we leave it to other interested 
researchers to investigate their viability in this application; the 
simplicity and wide recognition of k-means, along with the reasonable 
results given here, make it suitable for our purposes. In the only such 
study of which we are aware on biological data, Schreer et al. (1998) 
concluded that k-means was the best classification technique for dive 
profile data in an analysis that included performance comparisons 
with artificial neural networks, although obviously there are major 
differences between dive profile and coda data. 

It is encouraging that the multivariate similarity measures we 
devised show the same pattern as the classification methods - this 
agreement gives a greater confidence that the results are robust, 
particularly since the pattern of results is repeated across all values of 
b. It is also encouraging that the similarity results comparing social 
unit repertoires reflect rather well the degrees of overlap evident in 
Figure 6. The two distance metrics that we tested produced very 
similar patterns of results, with the main difference being that the 
infinity-norm distance was perhaps the better discriminator across all 
values of b, and so may give a more precise measure of repertoire 
similarity. We also argue that the similar patterns of results suggest 
that the theoretical limitations of both distance metrics are not 
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substantially affecting results. While the possibility that unforeseen 
combinations of codas may produce results dissonant with our stated 
aim of comparing coda rhythms still exists, we have shown that the 
methods produce results consistent with a different analysis method, 
k-means clustering (Figures 4 & 5), and with observable patterns in 
the raw data (Figure 6); the aggregative nature of our measure likely 
leads to specific anomalies being subsumed in broader scale patterns. 
One drawback of this method is that it is computationally demanding, 
especially for high numbers of bootstrap resamples: we performed the 
analyses again with 1,000 bootstrap resamples (as opposed to the 
original 100), which took our computer approximately three days to 
complete. The bootstrap standard errors for 1,000 resamples were 
nearly identical to those for 100 samples, but sometimes smaller. 

The slightly different results produced by various values of b are 
interesting: with similarity defined as in Equation 6, the value of b is 
an approximate measure of the resolution at which comparisons are 
being made, in terms of normalised inter-click interval. Considering 
Figure 3, and noting that the two obvious clusters present are about 
0.1 standardised click-interval units apart, suggests that calculating 
similarities with b = 0.1 will likely give us information on whether the 

Figure 7. Plot of the functional form ofthe similarity transformation at various 
b values (labelled lines; distance on the x-axis and resultant similarity on they 
axis) overlaid with a histogram of distances between the five click codas on our 
dataset calculated using the infinity-norm (data are proportion of total). 
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two social units make codas in similar or different clusters. Decreasing 
b to 0.01 or even 0.001 gives a very fine scale comparison of exactly 
how well the codas in each repertoire coincide within clusters, since 
each cluster in Figure 3 is approximately 0.05 data units across. 
Plotting the functional form of the similarity transformation against 
an actual distribution of coda distances shows how the transformation 
emphasis shifts to smaller distances as b decreases (Figure 7). It 
therefore does not make sense to recommend a fixed value for b as 
different values can provide information at different scales of analysis. 
In our data actual coda lengths, defined as the time between the 
onsets of the first and last clicks, ranged from 0.189 s to 9.510 s, with 
a mean of 1.228 s. Sob = 0.001 corresponds on average to a resolution 
of 1.2 ms (range 0.2-9 ms), which roughly equals the maximum 
resolution of our analysis system. Whether sperm whales can detect 
rhythmic differences of this scale remains a moot question. 

During this work we also developed and tested another approach 
to measuring similarities between codas of different sizes. This 
approach arose from the observation that certain coda 'classes' 
identified by Weilgart & Whitehead ( 1997) seem to span various coda 
sizes. For example, the '+1' codas (click-click-click-pause-click would be 
a 3+1 coda) are heard with differing numbers of clicks (i.e. 3+1, 4+1, 
5+ 1). To reflect such classes in our similarity measure we 'cross­
correlated' codas of different sizes using a technique best explained by 
example. Consider two codas, A and B; A contains four clicks and B 
contains six. Without disturbing the order or neighbour-relationships 
of clicks in B, one can extract 3 different four-click codas from it: B1 
with clicks one to four, B2 with clicks two to five and B3 with clicks 
three to six. Each of these can be standardised by dividing each click 
interval by the sum of the absolute click intervals of each given subset 
(Bl' B2, B3). One can then 'cross-correlate' the two codas by calculating 
the Euclidean distance between A and (Bl' B2, B

3
) and taking the 

minimum distance (hence maximum similarity). This similarity was 
then 'discounted' by an amount related to the difference in number of 
clicks between codas (otherwise, for example, a 3R and a 15R coda 
could have equal similarity to a 3R and another 3R, which few would 
consider useful); so instead of having similarities between codas of 
different size rendered zero as in Equation 6, a discounted distance 
would be entered into the averaging. Thus a 3+ 1 coda would be scored 
more similar to a 4+1 coda than to a 5R coda. However, reviewers 
pointed out that this method is biased toward uniform rhythm 
patterns, and does not always give results consistent with the aim of 
comparing rhythm. For example, consider a 4+ 1 and a 5R coda 
compared to a 4R coda: the 4+ 1 and 5R coda could produce identical 
similarities to the 4R by using only the first four clicks of each, despite 
having quite different rhythms. This theoretical inconsistency together 
with a more than three-fold increase in computation time to produce 
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results that had the same pattern as Figure 4 led to us deciding that 
this was unlikely to be a useful method in the future. 

In conclusion, we have developed and/or tested potentially useful 
ways to compare collections, or repertoires, of codas. The methods can 
be used in a variety of ways such as comparing social unit repertoires 
as here, or to compare the coda output of the same group recorded at 
different times, or in different ecological or behavioural situations. In 
addition, the methods can be employed at levels both below and above 
that of the group - from individual repertoires (if codas can be reliably 
assigned to individual whales) through to comparisons between 
oceans. In future studies it would be advisable to use both categorical 
and non-categorical techniques in tandem in order to minimise 
concerns that results are simply due to spurious categorisations or 
weaknesses in the distance metrics. We hope that these techniques 
will be helpful in future studies of sperm whale codas and other 
studies that face similar problems in comparing vocal repertoires 
represented by multivariate datasets. 
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