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The waveforms of individual sperm whale clicks often appear as multiple pulses, which are the

product of a single pulse reverberating throughout the spermaceti organ. Since there is a relation-

ship between spermaceti organ size and total body size, it is possible to estimate a whale’s length

by measuring the inter-pulse intervals (IPIs) within its clicks. However, if a click is recorded off-

axis, the IPI corresponding to spermaceti organ length is usually obscured. This paper presents an

algorithm for automatically estimating the “true” IPIs of sperm whales in a recording by measuring

them from on-axis clicks only. The routine works by classifying detected clicks with a support vec-

tor machine, assessing the stability of their IPIs, and then clustering the stable IPIs using Gaussian

mixture models. Results show that the routine is very accurate in obtaining reliable IPIs, but has a

high false negative rate. Nonetheless, since sperm whales click very frequently, it is possible to

obtain useful IPI distributions with only a few minutes of recording. This algorithm makes it possi-

ble to estimate the body lengths of multiple sperm whales automatically with only one hydrophone.

An implementation is available for download at http://whitelab.biology.dal.ca/CABLE/cable.htm.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5082291
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I. INTRODUCTION

Passive acoustic monitoring (PAM) has become a popu-

lar means of studying whales and dolphins over the past sev-

eral years. With better recording equipment, sound analysis

tools, and the realization that cetaceans are more easily

observed acoustically than visually, PAM is increasingly

being used to supplement or replace traditional visual sur-

veys (Thomas et al., 1986; Mellinger et al., 2007). The

sperm whale is very well suited to study through PAM, since

this species spends most of its time foraging at depth

(Watwood et al., 2006), during which it typically produces

loud clicks (Backus and Schevill, 1966; Whitehead and

Weilgart, 1990). The incorporation of passive acoustics into

sperm whale surveys has significantly increased the range

and sensitivity of detection (Barlow and Taylor, 2005).

Sperm whale clicks also possess an interesting feature:

a single click is composed of multiple pulses (Backus and

Schevill, 1966). According to the accepted “bent-horn”

model of sperm whale sound production (Norris and Harvey,

1972; Møhl, 2001), these pulses are the product of reverbera-

tions between air sacs at the front and back of the spermaceti

organ. As a consequence, the inter-pulse interval (IPI) is

directly related to the length of the spermaceti organ. Since

there is also an allometric relationship between spermaceti

organ length and body length (Nishiwaki et al., 1963;

Clarke, 1978; Gordon, 1991), it is possible to estimate a

whale’s body length simply by measuring its IPI (Norris

and Harvey, 1972; Møhl et al., 1981; Adler-Fenchel, 1980;

Gordon, 1991; Rhinelander and Dawson, 2004; Growcott

et al., 2011). This feature makes PAM especially informative

for sperm whales.

Unfortunately, however, most sperm whale clicks from

typical far-field recordings do not display a clear structure

suitable for IPI calculation. They often appear with extra

pulses at variable locations, making the pulse interval irregu-

lar. These extra pulses arise because of directionality: sperm

whale clicks are highly directional, and their structure in

both frequency and time appears different based on the posi-

tion of the receiver relative to the whale’s acoustic axis

(Møhl et al., 2003; Zimmer et al., 2005). Only clicks

recorded on-axis (i.e., directly in front or behind) display the

characteristic multi-pulse structure representative of the

spermaceti organ size. Clicks recorded off-axis are con-

founded by omnidirectional reflections from the air sacs

(Zimmer et al., 2005). As a consequence, IPI calculation is

actually a difficult task, because it requires that on-axis

clicks be separated from the off-axis ones.

Most studies that have used IPIs have worked around

the directionality problem by manually searching for and

removing off-axis clicks (e.g., Adler-Fenchel, 1980; Gordon,

1991; Drouot et al., 2004; Rendell and Whitehead, 2004;

Rhinelander and Dawson, 2004; Schulz et al., 2011). This

method is effective, but can quickly become impractical, as

just 1 h of recording can yield over 4000 clicks per whale.

Another approach is to average every click in a sequence

(Teloni et al., 2007; Antunes et al., 2010). Averaging works

because the stability of the true IPI allows it to emerge above

the noise, but this assumes that each click was produced by the

same whale. Thus, this method is only reliable if individuala)Electronic mail: wilfried.beslin@dal.ca
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click trains can be separated, which is difficult and impracti-

cal in many situations.

One approach to IPI compilation that has not been tested

until now is using automatic classification to isolate on-axis

clicks. A great advantage to this approach is that it does not

require knowledge of which whale produced which clicks, so

click trains do not need to be resolved. The goal of this

research was to produce a software tool capable of compiling

reliable IPI distributions automatically, based on machine clas-

sification of clicks. This tool is designed to be as simple to use

as possible, requiring only a single-channel audio recording

file as input. The output consists of filtered IPI distributions,

with estimates of how many whales are present, what their

true IPIs are, and ultimately their body sizes. Such a tool could

greatly enhance the effectiveness of PAM for sperm whales.

This paper describes how the tool was developed, its

underlying algorithms, and its performance. The tool itself

can be downloaded at http://whitelab.biology.dal.ca/CABLE/

cable.htm.

II. METHODS

A. Data collection

The routine was developed using a primary dataset of

recordings collected off the west coast of the island of

Dominica in the Eastern Caribbean from February to April

2015. These recordings were collected as part of a long-term

behavioural research program on female sperm whale socie-

ties (see Gero et al., 2014). A secondary dataset collected off

the Gal�apagos Islands from January to May 2014 was also

used for additional testing.

In both regions, the same equipment and protocols were

used. Female and immature sperm whales were followed

aboard a 12-m auxiliary sailing vessel. Acoustic recordings

were made using a custom-built towed hydrophone (Benthos

AQ-4 elements, frequency response 0.1–30 kHz) and a filter

box with high-pass filters up to 1 kHz. This resulted in a

recording chain with a flat frequency response across a mini-

mum of 2–20 kHz. Audio data were collected through a

computer-based recording system, with a sampling rate of

either 48 or 96 kHz, and 16-bit resolution. All recordings

were stored in WAVE format. Recordings were categorized

into two types based on how they were obtained, which are

referred to as “first-click” and “standard”. The Dominica

dataset included both types, while the Gal�apagos dataset

consisted of only standard recordings.

In the first-click protocol, acoustic recording was initi-

ated immediately after a whale began a foraging dive. The

research vessel remained stationary. In this scenario, since

the whale is near and facing almost directly away from the

research vessel during its descent, the echolocation clicks it

produces are likely to be perceived clearly and on-axis. The

purpose of first-click recordings was to obtain samples of

on-axis sperm whale clicks. Since the animals of interest

were facing away from the hydrophone in these recordings,

only backward on-axis clicks could be characterized.

However, forward clicks should not pose a problem (see

Appendix A in the supplementary material1 for justification).

A total of 7 first-click recordings from Dominica were used

for this purpose. These lasted between about 3.5 and 7.5 min

(36 min total). Due to the social nature of female sperm

whales, most first-click recordings captured more than one

animal diving at the same time. Based on photographic iden-

tification of the flukes of diving whales (Arnbom, 1987),

these seven recordings contained clicks from at least ten

adult female-sized individuals in total.

In the standard protocol, acoustic recording was initiated

at predetermined time periods (usually 1 h intervals) during

days when sperm whales were encountered. In some cases,

the research vessel was stationary, while in others it was sail-

ing or motoring at low speed. In this scenario, the location,

orientation, number, and identity of whales immediately sur-

rounding the hydrophone is usually unknown. Since sperm

whales spend most of their time foraging, any whales present

during standard recordings are likely to produce echoloca-

tion clicks. However, these clicks may be perceived from

any angle, and the majority are typically off-axis. Standard

recordings were normally run for 4 min, although on a few

occasions, this varied between 3 and 15 min. Standard

recordings were used to obtain click samples typical of most

PAM situations. A total of 174 standard recordings were

used from Dominica, representing 14 h total. The Gal�apagos

dataset consisted of 141 standard recordings, representing

10 h and 12 min total.

B. Software design overview

The routine takes digital audio files as input (WAVE

format), filters the contents automatically for on-axis sperm

whale clicks through a series of steps, and outputs the IPIs of

the filtered clicks along with estimates of animal counts,

their IPIs, and body lengths. All analysis is conducted at

48 kHz. If the original sampling rate is different, then the

recording is resampled automatically. Recordings can have

any number of channels, but only one is used. This program

uses MATLAB version R2015a with the Signal Processing

Toolbox, the Statistics and Machine Learning Toolbox, the

Curve Fitting Toolbox, and the Parallel Computing Toolbox

(The MathWorks, Inc., Natick, Massachusetts). Sections

II C–II H describe each step in the algorithm, with further

details on certain steps expanded upon in Appendix A in the

supplementary material.1 A complete graphical representa-

tion of the algorithm is also available in Appendix B in the

supplementary material.1

The routine uses several parameters that can be

adjusted. With the exception of two key parameters (dis-

cussed later), a complete sensitivity analysis was beyond the

scope of this work. However, each parameter has a default

value that was established based on published information,

data observations, and/or robustness to various signal-to-

noise ratios (SNRs). Thus, defaults should be reliable and

widely applicable. Parameters are described in Appendix C

in the supplementary material.1

C. Audio loading and preprocessing

The program extracts the recorded sound pressure wave-

form from one channel (the first by default) of an input audio

file. If the waveform needs to be resampled, a finite impulse
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response anti-aliasing filter is applied. This filter uses a

Kaiser window and has an order of 50�maxðp; qÞ, where

p=q is the reduced resampling ratio. The waveform is then

noise-filtered using a 2–12 kHz Butterworth bandpass filter,

run in both directions to avoid non-linear frequency-

dependent delay (i.e., zero-phase filtering). Although sperm

whale clicks contain some energy outside this band, IPIs

were generally more stable when limited to 2–12 kHz. Filter

order after zero-phase filtering is 12.

D. Click detection

Candidate sperm whale clicks are detected within the

time series by a custom click detection algorithm. This

algorithm is based on the Page test (Page, 1954), a method

commonly used to isolate cetacean clicks. The particular

implementation used here is similar to the ones described by

Miller (2010) and Zimmer (2011), and used by the open-

source PAM software PAMGUARD (Gillespie et al., 2008).

It was adapted to capture the multi-pulsed structure of sperm

whale clicks as accurately as possible.

The detector essentially consists of two steps. The first

step is the Page test, which finds regions in the time series

that correspond to potential sperm whale clicks. This is fol-

lowed by a validation step, which edits these regions and

establishes the start and end periods of each click. Clicks are

detected based on the SNR. Signal and noise power are com-

puted based on the square of the waveform envelope, where

envelope is computed as the absolute value of the analytic

signal (obtained using the Hilbert transform). Details of the

click detection process are included in Appendix A in the

supplementary material.1

E. Feature extraction

After candidate clicks have been detected, the program

computes a set of spectral and temporal features from each

click. The purpose of these features is to provide information

from which on-axis sperm whale clicks can be differentiated

from off-axis clicks and other transients. A description of

each feature and the feature selection process is included in

Appendix A in the supplementary material.1

Most features depend on information that must be com-

puted beforehand, including the location of individual pulses

within a click, the frequency spectra of clicks, and exponen-

tial curve fits. Sections II E 1–II E 3 describe the calculation

of these dependencies in more detail.

1. Pulse detection

The isolation of individual pulses within a sperm whale

click is particularly tricky, because the noise level within

clicks is often highly variable, and later pulses may be

fainter than the average noise. Thus, conventional click

detection does not perform well at this resolution, because a

fixed SNR threshold risks rejecting many pulses, or detecting

many spurious ones. Therefore, a different approach was

used. This approach involves signal smoothing, followed by

the detection of local maxima. Details on this procedure are

in Appendix A in the supplementary material.1

2. Frequency spectrum calculation

To compute spectra, a Tukey window is applied to each

click, where the flat portion always encompasses the entire

click. The Fast Fourier Transform (FFT) is then applied to

each windowed click. The number of points used in FFT is

the number of samples within the window of the longest

click in the file, rounded up to the next integer power of 2.

Thus, the number of FFT points is consistent for each click

in a file, but can vary between files.

3. Exponential fitting

This process depends on pulse detection and is intended

to describe the amplitude decay of pulses in on-axis clicks. It

involves the least-squares fitting of exponential curves of the

form

yðtÞ ¼ aebt; (1)

where y corresponds to the peak pulse amplitudes (measured

from the waveform envelope), and t is time. For every click,

this equation is fit to the peaks of all pulses composing the

click. To standardize these fits and ensure that the coeffi-

cients are comparable across clicks, each click undergoes

two transformations before the fit is applied. First, the whole

click is scaled in amplitude such that its tallest peak is equal

to one. Second, it is scaled along the time axis so that the

first pulse’s peak occurs at t ¼ 0, and the mean delay

between consecutive peaks is equal to one. This is done in

an attempt to standardize the IPI in a manner that is robust to

variability in the number of pulses detected within clicks.

F. Click classification

The next step uses the extracted features to automati-

cally classify each click as being an on-axis sperm whale

echolocation click (“Good”) or not (“Bad”). Only echoloca-

tion clicks are considered Good. Coda clicks, which are used

for communication (Watkins and Schevill, 1977; Weilgart

and Whitehead, 1993), are considered Bad in this case,

because they differ slightly from echolocation clicks in their

structure (Madsen et al., 2002) and IPI (Schulz et al., 2011;

Bøttcher et al., 2018). Classification is performed by a sup-

port vector machine (SVM) that uses a quadratic kernel.

Using Platt’s (1999) method, SVM scores for each click are

modified to estimate the probability that the click is Good.

The routine accepts clicks as Good if their probability scores

are above a certain threshold (discussed in Sec. II I).

The SVM was trained using a dataset of clicks automati-

cally detected from all seven first-click recordings. Clicks

were labeled as being Good or Bad by an observer (W.B.),

resulting in a dataset of 487 Good clicks and 6499 Bad

clicks. Good clicks were identified based on clear multi-

pulsed waveforms characteristic of on-axis clicks, as described

by Zimmer et al. (2005). The accuracy of the SVM was

assessed based on tenfold cross-validation. Further details on

classifier training are included in Appendix A in the supple-

mentary material.1
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G. IPI calculation and validation

After each click has been automatically classified as

Good or Bad, the routine computes IPIs for all Good clicks.

This is done using the two methods proposed by Goold

(1996): autocorrelation analysis and cepstral analysis. Thus,

each Good click initially has two IPI estimates. For both

methods, the program constrains IPI calculation between

2 ms, and either 9 ms or the click duration, whichever is

shorter. The upper bound of 9 ms is a limit for the IPIs of

large male sperm whales, while the lower bound of 2 ms is

used to avoid confusion from high correlations within wide

first pulses (Marcoux et al., 2006). However, this lower

bound may exclude clicks produced by young calves

(Tønnesen et al., 2018).

For cepstral analysis, the power cepstrum is computed as

Cq ¼ jFFTð log10ðjFFTðxtÞj2ÞÞj: (2)

To get a good signal in the cepstrum, it is best if all pulses

have the same amplitude. To facilitate this, clicks are win-

dowed before the first FFT, where the window function

consists of chi-squared probability densities as suggested by

Goold (1996),

fw nð Þ ¼ 1

2k=2C k=2ð Þ
n k=2ð Þ�1e� n=2ð Þ; (3)

where C is the gamma function for positive integers

CðkÞ ¼ ðk � 1Þ! (4)

In all cases, k is set to 4, as this value appeared most appro-

priate based on visual inspection of several windowed clicks.

The second FFT uses a Tukey window with the flat part

spanning 2–12 kHz. The number of samples used for each

window is the maximum of either the smallest integer power

of 2 that is larger than the number of samples within the lon-

gest click, or the smallest integer power of 2 such that the

“Nyquist quefrency” is greater than the upper IPI limit.

For each click, a final IPI is obtained by averaging the

autocorrelation and cepstral IPIs. The point of using both

methods is to improve confidence in the IPI estimate.

Neither method on its own is perfect (Antunes et al., 2010;

Bøttcher et al., 2018), but if they both return the same num-

ber, then the final IPI is likely to be reliable. Therefore, the

next step in the routine rejects all clicks whose two IPI esti-

mates deviate from the average by more than 0.05 ms by

default, as in Schulz et al. (2011).

After each IPI has been calculated and validated for pre-

cision, a final validation step is performed. This involves

searching for IPI repetitions. Since sperm whales emit echo-

location clicks in trains at short, regular intervals, it is

expected that the same IPI will be recorded more than once

within a few seconds. The program exploits this property to

further validate the IPIs it has measured. For each Good

click with a precise IPI, the routine scans the time series

locally about the click’s time of occurrence, in both direc-

tions. The target of this scan is another click with the same

IPI as the focal click, within tolerance (60.05 ms by default).

If the scan is successful, then a new scan is performed about

the repeated click. This cycle continues for as many repeti-

tions as specified. To reduce confusion, a “repetition” is

explicitly defined as being one recurring instance (within tol-

erance) of an IPI within a neighboring click. Based on this

definition, “zero repetitions” means that a click has no neigh-

bors with a similar IPI, “one repetition” means that a click has

one neighbor with a similar IPI, and so on.

When searching for the first repetition, the scan is con-

ducted within a broad range of typical sperm whale inter-

click-interval (ICI) values from the original click (0.25–1.5 s

by default). For subsequent repetitions, the range is narrowed

such that only clicks with the same ICI as that separating the

previous two clicks (60.2 s by default) are considered. If

more than one click is found within range, then each click is

used to search for successive repetitions until the required

number of repetitions has been met. All clicks with an insuf-

ficient number of successive IPI repetitions within ICI range

are removed. Those with enough repetitions contribute to the

final IPI distribution.

H. Animal count and length estimation

The number of whales present and their body lengths

are estimated through cluster analysis of the filtered IPI

distribution. This is accomplished using Gaussian mixture

models (GMMs). IPI measurements from individual whales

have been found to be quite stable, often within 60.05 ms

from the mean (Schulz et al., 2011; Antunes et al., 2010;

Growcott et al., 2011). Therefore, output IPI distributions

are expected to contain mixtures of narrow peaks, where

each peak corresponds to an individual whale (assuming

each whale present in the recording has a distinct IPI).

Mixture modeling is thus a suitable approach for resolving

the composition of IPI distributions.

GMMs are fitted through the Expectation-Maximization

(EM) algorithm, which is an iterative process for estimating

the most likely parameter values. It requires that the number

of clusters, k, be specified beforehand, and may also take

estimates of cluster means, variances, and proportions to

accelerate convergence. In this case, GMMs are initialized

based on two Gaussian kernel density estimates (KDEs).

One kernel uses a wide bandwidth (0.0333 by default), while

the other has a narrow bandwidth (0.0167 by default).

GMMs are run for every k within the range maxð1;Nwide �
1Þ to Nnarrow þ 1, where Nwide and Nnarrow represent the num-

ber of peaks found within the wide and narrow bandwidth

KDE functions, respectively. Initial estimates of cluster

means and proportions are also based on KDE peaks. In the

case where k ¼ Nwide � 1, a peak is removed at random.

Likewise, for k ¼ Nnarrow þ 1, a peak is added at random.

For values of k in-between, the peaks to use are decided

based on sparseness, where the most isolated peaks are

added first as k increases. The initial standard deviation

varies based on the value of k and the bandwidths of the two

KDEs. To avoid numerical instabilities, and also account for

IPI quantization to some degree, a value of ð1=FsÞ=4 is

added to each standard deviation during the EM estimation,

where Fs is in kilohertz. By default, standard deviation is
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constrained to be identical for all clusters in a model. GMMs

with different numbers of clusters are compared to one

another using the Bayesian Information Criterion (BIC),

where smaller values represent better support. When analyz-

ing an IPI distribution through mixture modeling, the routine

returns models for all k’s tested, ranked by order of smallest

BIC.

The results of GMM clustering provide insight into how

many whales are present, and what their IPIs are. The means

of each cluster in a GMM are estimates of each whale’s true

IPI. From these measures, body lengths can be estimated

using equations such as those published by Gordon (1991)

and Growcott et al. (2011).

I. Performance analysis

The performance of the automatic IPI filter was assessed

primarily by examining its output for standard recordings

from Dominica. The routine was run multiple times for each

recording, where two parameters were changed for each run:

the minimum probability at which a click is considered

Good, and the number of times each IPI must be repeated in

succession. Minimum probability was tested for values of

0.1, 0.3, 0.5, 0.7, and 0.9, with IPI repetition fixed at 1. IPI

repetition was tested for values of 0 through 4, with mini-

mum probability fixed at 0.7. Ideally, to measure routine per-

formance, the “true” probability distribution of IPIs for each

whale present during the standard recordings would need to

be known. Unfortunately, this information is extremely diffi-

cult to obtain in the field and was not available for this analy-

sis. Thus, performance was assessed using two alternative

approaches. One of these is called “peak definition,” which

measures the stability of variance among clusters of IPIs in a

given recording. “Peak” in this sense refers to areas of high

density in IPI distributions that appear roughly normally dis-

tributed, and presumably correspond to the IPIs of individual

whales. The other measure of performance is referred to as

“accuracy,” with respect to manually compiled IPI distribu-

tions. Accuracy in this sense quantifies how two probability

distributions are similar to one another.

To measure peak definition, mixture modeling was

applied. For each distribution, two GMMs with an equal

number of clusters were compared, where one model

required all clusters to have the same variance, and the other

did not. The constrained model consisted of the “best” model

output by the same procedure used for estimating whale

lengths. The unconstrained model was obtained by running

the EM algorithm for the same k as the constrained model,

with initial parameter estimates also equal to the constrained

model values. Peak definition was measured as the log likeli-

hood ratio between these two models,

log Kð Þ ¼ log
Lconstrained

Lunconstrained

� �
: (5)

The argument for using this measure is that individual

whales are not expected to differ greatly in their IPI varia-

tion, so models with shared variance should fit reasonably

well. If the likelihood of unconstrained (and thus potentially

overfit) models is considerably better, then this suggests that

individual clusters may not be clear. Distributions with clear

peaks should have a log ðKÞ close to zero. Since log ðKÞ is

necessarily zero when k ¼ 1, those cases were ignored.

To measure accuracy (with respect to manually-

compiled IPI distributions), nine standard recordings from

Dominica were selected, which varied in quality from good

to poor. Quality was indicated by the mean peak SNR of

each detected click. Manual IPI calculations were performed

by one observer (W.B.); details on this process are included

in Appendix A in the supplementary material.1 Manual and

automatic distributions were compared through shared-

variance GMMs, which were fit using the same process as

for length estimation. The accuracy of the automatic method

was measured as the total overlap in area between the proba-

bility density functions of the two GMMs.

Since the automatic routine was developed entirely

using clicks obtained from Dominica, it is of interest to

examine how it performs under different scenarios. To this

end, automatic IPI distributions from the 141 standard

Gal�apagos recordings were also examined. In addition to

oceanographic differences, the Gal�apagos differs signifi-

cantly from Dominica in that sperm whales are typically

grouped in much greater numbers (Whitehead et al., 2012).

III. RESULTS

A. Classifier performance

Overall accuracy of the SVM in classifying on-axis

sperm whale clicks versus other transients, as estimated

by tenfold cross-validation before Platt transformation, is

98.8%. When adjusted to account for the imbalance in fre-

quency between each class, accuracy is 94.3%. Sensitivity

(a.k.a., true positive rate, or recall) is 89.1%, specificity

(a.k.a., true negative rate) is 99.5%, and precision is 92.7%.

B. Output IPI distributions

In many cases, the routine filtered out all IPIs, resulting

in empty distributions. This occurred with greatest frequency

when the number of required IPI repetitions was high (e.g.,

two repetitions or higher). However, based on visual inspec-

tion of each distribution, many of those that were not empty

appeared as expected, in the sense that they contained narrow

peaks at values appropriate for Caribbean sperm whales (Fig.

1). GMMs also appeared to detect these peaks quite accurately

in most cases. Those distributions that were not as clear either

had very few IPIs, had many small clusters (most likely

noise), or had many peaks very close to each other. The vast

majority of noisy distributions occurred when the filter did not

require IPIs to be repeated. In general, for distributions with

many IPIs, increasing the required number of repetitions

resulted in clearer patterns, but at the cost of missing peaks.

Peak definition, as assessed by the likelihood ratio

between GMMs with shared and unshared variance, was often

worse when IPIs did not need to be repeated. For all cases

where IPIs did need to be repeated, peak definition was usu-

ally quite good in comparison, and did not change greatly

with the number of repetitions [Fig. 2(a)] or the probability
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threshold [Fig. 2(b)]. Accuracy, as measured by the amount of

overlap between the probability density functions of GMMs

fit to manually- and automatically-compiled IPIs, showed a

consistent decrease as both filter parameters became more

selective [Figs. 2(c) and 2(d)]. Observing the manual and

automatic distributions themselves showed fairly good agree-

ment in the detection of peaks, although some peaks in the

automatic distribution appeared to be missing [Fig. 3(a)]. The

acceptance rate is also much lower with automatic filtration

[Fig. 3(b)]. These indicate a high false negative rate.

The proportion of detected clicks that are accepted into the

final distributions is always very low, below 0.01 in

the overwhelming majority of cases. Not surprisingly, it

decreases consistently as filter parameters become more selec-

tive, but this is much more pronounced with IPI repetition [Fig.

2(e)] than with probability threshold [Fig. 2(f)]. Acceptance

rates of zero are common, and usually represent the majority of

cases when IPIs need to be repeated twice or more (depending

slightly on probability threshold). However, there was a fair

amount of variation in all cases. Though uncommon, it was pos-

sible for some distributions produced by the least selective filter

to be empty. Likewise, some distributions produced by the most

selective filter were larger than average [Figs. 2(g) and 2(h)].

C. Differences between recording scenarios

As expected, the frequency of click detections was

much greater for the Gal�apagos (mean¼ 1390 clicks/min)

FIG. 1. Example IPI distributions output from four standard recordings

from Dominica. Filtration parameters were set at 1 IPI repetition, and a

goodness probability threshold of 0.7. Black lines represent probability

density functions of clusters from the best GMMs, according to BIC. Bin

width¼ 1/Fs.

FIG. 2. Performance of automatic IPI compilation for 174 standard

recordings from Dominica. The left column shows the effect of variable

numbers of IPI repetitions, with the goodness probability threshold held

constant at 0.7. The right column shows the effect of variable goodness

probability thresholds, with the number of IPI repetitions held constant at

1. log ðKÞ ¼ log likelihood ratio between mixture models with shared and

unshared variance. OVL ¼ overlapping coefficient between probability

density functions of mixture models fit to manually and automatically com-

piled IPI distributions.

FIG. 3. Automatic IPI compilation compared to manual compilation for

nine standard recordings. Automatic compilation for the case shown here

required 1 IPI repetition and a goodness probability threshold of 0.7. The

dark shade corresponds to manual data. (a) Comparison of IPI distributions,

with manual counts on top and automatic counts on the bottom. Bin

width¼ 1/Fs. (b) Click acceptance rates.
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than for Dominica (mean¼ 489 clicks/min). IPI distributions

from the Gal�apagos were similar to Dominica in that they

often contained narrow peaks when enough IPIs were present;

however, the density of peaks was generally higher, and indi-

vidual clusters tended to be more ambiguous (Fig. 4).

Compared to Dominica, Gal�apagos distributions showed

similar trends in peak definition, but were generally of lower

quality. On average, the Gal�apagos peak definition was com-

parable to Dominica when IPIs needed to be repeated twice

or more, but became progressively worse below two repeti-

tions [Fig. 5(a)]. When the probability threshold was varied,

Gal�apagos distributions showed a slight increase in average

peak definition, but the level remained inferior to Dominica

[Fig. 5(b)]. In summary, it appears that peak definition is

generally worse for Gal�apagos distributions, but it improves

at a faster rate than for Dominica as filter parameters become

more selective.

Regarding click acceptance rate, Gal�apagos distribu-

tions showed the same decreasing trends as for Dominica

with both number of IPI repetitions and probability threshold.

However, Gal�apagos distributions consistently had smaller

acceptance rates on average than for Dominica [Figs. 5(c) and

5(d)]. Despite this though, Gal�apagos distributions contained

relatively similar numbers of IPIs as in Dominica [Figs. 5(e)

and 5(f)].

IV. DISCUSSION

A. Performance

The automatic IPI compilation algorithm presented here

was overall successful in producing reliable IPI distributions

straight from single-hydrophone recordings of foraging

sperm whales. The SVM was shown to be very effective in

distinguishing between on-axis sperm whale echolocation

clicks and other click types. The full routine, when applied

to approximately 4-min long recordings of sperm whales in

Dominica, often produced IPI distributions that contained

precise peaks at values that were reasonable for these

whales, provided that the IPI filtration parameters were not

extreme. Furthermore, the distributions produced by the rou-

tine were similar to those obtained through manual click fil-

tration, suggesting that they are similarly reliable. Gaussian

mixture modeling appears to be an effective method for

detecting IPI peaks automatically. If several candidate mod-

els are available for a given distribution, the model with the

smallest BIC should usually be the most plausible, but this

may not always be the case: for example, in the top distribu-

tion of Fig. 1, a 2-cluster model may have been more appro-

priate than the 3-cluster one selected. Therefore, alternative

models with slightly less BIC support should not be discounted.

IPI repetition was shown to be a very influential parame-

ter. When IPIs do not need to be repeated, the resulting dis-

tributions are likely to contain more IPIs, but in many cases

they are unsuitable for analysis. This is evident from the

peak definition measure. Most distributions produced with-

out requiring IPI repetition had a distinctively noisy appear-

ance, so it is likely that this noise is responsible for poor

peak definition. GMMs, as implemented here, attempt to

cluster every sample, so outliers can be problematic. Outliers

may be grouped into very small, possibly single-sample clus-

ters, or they may be included with other samples to form

wide clusters. In either case, models with shared variance

usually do not fit well, because the erroneous clusters are

likely to have large differences in variance.

FIG. 4. Example IPI distributions output from four standard recordings from

the Gal�apagos. Filtration parameters were set at 1 IPI repetition and a goodness

probability threshold of 0.7. Black lines represent probability density functions

of clusters from the best GMMs, according to BIC. Bin width¼ 1/Fs.

FIG. 5. Performance of automatic IPI compilation compared between 174

standard recordings from Dominica, and 141 standard recordings from the

Gal�apagos. Points represent mean values. The left column shows the effect

of variable numbers of IPI repetitions, with the goodness probability thresh-

old held constant at 0.7. The right column shows the effect of variable good-

ness probability thresholds, with the number of IPI repetitions held constant

at 1. log ðKÞ ¼ log likelihood ratio between mixture models with shared and

unshared variance.
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Comparing automatic IPI distributions with manually

compiled ones showed that the automatic method becomes

less accurate as filter parameters become more selective.

This may seem surprising, but it is easily explained.

Increasing filter selectiveness results in fewer false positives,

but this comes at the cost of more false negatives, or misses.

The rate at which the number of misses increases is much

greater than the rate at which the number of false positives

decreases, which causes overall accuracy to decrease. A

consequence of this imbalance is that it is not necessarily

desirable to attain maximum accuracy. As shown by peak

definition, a modest number of false positives can make it

difficult to analyze an IPI distribution. In contrast, false neg-

atives are a nuisance, but they do not complicate analysis

to the same degree as false positives. Therefore, a balance

needs to be found between the two, with greater weight

placed on reducing false positives. In light of this, disabling

IPI repetition checks is still not a good option, even though

this yields the highest overall accuracy.

This brings up the greatest weakness of automatic IPI

compilation: acceptance rate. For all recordings, even the

least selective filtration criteria resulted in very small distri-

butions, relative to the total number of clicks that were

detected. To a certain extent, this is expected, given the rar-

ity of clicks with clear multi-pulse structures. Essentially,

individual clicks are only suitable for IPI calculation if three

criteria are met: (1) the hydrophone must be aligned with the

whale’s acoustic axis; (2) the click must not coincide with

other clicks or echoes; and (3) the click must be significantly

louder than background noise. Clearly, the probability that

all of these conditions will be true for any click is small, par-

ticularly with far-field PAM recordings. Some recordings

may be more likely to meet them than others, depending on

factors such as noise level, distance from the whales, number

of whales, and reflective profile of the environment. Whale

orientation, however, is a more random factor, and some

recordings may simply be more fortunate than others in the

amount of time that whales are aligned with the hydrophone;

this would explain why acceptance rate is so variable. However,

the rarity of on-axis clicks alone does not explain the routine’s

particularly low acceptance rate. Recall that there is a large dis-

crepancy in acceptance rate between manually and automati-

cally compiled IPI distributions [Fig. 3(b)], which reflects a

highly aggressive filter.

While it is not ideal to reject so many positives, this

should not be debilitating in practice. The main reason for

this is because of the high click rates of sperm whales: 1.2

clicks/s while foraging according to Whitehead and Weilgart

(1990). Thus, good IPI distributions can successfully be

obtained from just a few minutes of recording, as is evident

from many of the distributions obtained here (e.g., Fig. 1).

Another reason is that it does not take many IPIs to resolve

peaks. Since there are few false positives, each IPI in a dis-

tribution is very likely to be a true one, at least when each

IPI is required to be repeated at least once. Thus, automatic

IPI distributions are likely to be reliable even when clusters

contain relatively few samples, in that those clusters likely

represent the IPIs of some whales in the area. Click accep-

tance rate can also be improved with simple techniques. For

instance, maintaining distance between the hydrophone and

reflective surfaces (notably the sea surface) should help,

since direct-path clicks will be less likely to overlap with

their echoes. However, it is important to remember that click

acceptance rate is inherently variable, due to its dependence

on whale orientation.

On the software end, the only way to substantially

improve acceptance rate, aside from relaxing filtration crite-

ria, is by improving the classifier. With an estimated sensi-

tivity of 89.1%, the SVM is quite good at recognizing on-

axis clicks, but this is perhaps not enough. Since each IPI

must be repeated to be valid, any on-axis clicks missed by

the SVM can further invalidate surrounding clicks by creat-

ing gaps in repetition chains. This explains why acceptance

rate decreases rapidly as the number of required repetitions

increases. Thus, improving the SVM’s sensitivity would

greatly reduce this problem. However, it should not be done

with detriment to specificity, otherwise peak definition may

decrease. This may seem difficult, but it should be possible.

One factor that likely contributes to classifier confusion is

binary classification. This is a problem for two reasons.

First, there is no hard separation between on- and off-axis

clicks. Ideas for solving this problem include fuzzy labelling

(i.e., weighting) of training instances, or using a semi-

supervised learning approach where “Unsure” clicks are

included as unlabeled instances (Schwenker and Trentin,

2014). For the present classifier, such clicks were simply

removed from the dataset (see Appendix A in the supple-

mentary material1). The second problem is that there are

several click types which may exhibit features that overlap

with those of the targeted type. For example, on-axis coda

clicks and clear surface reflections could share some features

with direct-path on-axis echolocation clicks. This can be

addressed by using more than two classes. In this case, it

might work best if classification is done hierarchically,

where clicks are given multiple labels. For example, each

click could be classified as being a usual, coda, or other click

type, being on-axis or not, and being a direct-path or

reflected click. This would be especially useful for studies

that focus on codas (e.g., Pavan et al., 2000; Rendell and

Whitehead, 2004; Marcoux et al., 2006; Schulz et al., 2008;

Antunes et al., 2011; Schulz et al., 2011; Gero et al., 2016b).

Another factor that could contribute to a low acceptance

rate is if the dataset used to train the SVM does not fully cap-

ture the complete range of possibilities. The Good clicks in

the training dataset consisted mainly of clicks from whales

that started a foraging dive, in the first few minutes of their

dive. However, some features, notably spectral ones, are

known to change with depth (Thode et al., 2002). Thus, the

SVM might potentially have difficulty recognizing clicks

from deeper whales. Individual variation in click features

might also cause some difficulty, as there were only ten

diving whales in the training dataset. However, the high

accuracy reported by cross-validation suggests that this is a

relatively minor problem.

Using the current classifier, checking for one repetition

is likely the best trade-off in most cases, at least for

Dominica surface recordings. If many IPIs are available, the

number of repetitions may be increased to further improve
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the quality of the distribution. In contrast, if few IPIs are

available, one technique to improve the acceptance rate

might be to disable IPI repetition, and then ignore potentially

erroneous IPIs (i.e., very small clusters). This would be pos-

sible, for example, by applying mixture modeling techniques

that are robust to outliers (McNicholas, 2016). Of course

though, these distributions would likely not be as precise as

when IPI repetition is enforced.

As evident from Fig. 2, the “goodness” probability

threshold does not impact peak definition or acceptance rate

as drastically as IPI repetition (between 0.1 and 0.9 at least).

This might be a consequence of the binary nature of the

SVM, and also the fact that ambiguous clicks were not used

to train it. Nevertheless, a value of 0.7 is recommended as a

default.

1. Differences between recording scenarios

Compared to Dominica, IPI distributions from the

Gal�apagos generally had more peaks, which were often

closely spaced and more ambiguous to interpret. This fits

with groups being considerably larger off the Gal�apagos

(Whitehead et al., 2012). As for the generally poorer peak

definition and lower acceptance rate, the most likely expla-

nation is that clicks recorded off the Gal�apagos were of

poorer quality overall, in the sense that few of them had clear

multi-pulsed structures. More poor quality clicks would nec-

essarily result in a lower acceptance rate. Peak definition

could also be impacted, due to a higher number of false posi-

tives: if more poor-quality clicks are present, the SVM has

more opportunities to misclassify Bad clicks as Good. A

likely reason why the Gal�apagos might have poorer clicks is

because of its higher click density: when more whales are

clicking together, the clicks have a higher chance of overlap-

ping with one another, resulting in a greater proportion of

unusable clicks.

Another explanation for the apparent inferiority of

Gal�apagos IPI distributions could be that the SVM does not

recognize on-axis clicks from the Gal�apagos as easily as it

does for Dominica. This could happen if the distribution of

classifying features differs somehow between Dominica and

Gal�apagos clicks. Such a difference might occur if, for

example, sound does not propagate the same way between

regions, or the recording setup differed in some way that was

not identified. Another plausible cause is that the “voices” of

the whales encountered are significantly different between

regions. Noise is not likely a factor, since the recordings ana-

lyzed here did not differ significantly between regions in this

regard.

Ideally, to deal with potential differences between

recording scenarios, the classifier should be trained using

clicks from each scenario. Unfortunately, this is a time-

consuming procedure that must be done by someone who is

skilled at recognizing on-axis sperm whale clicks. A simpler

but less effective workaround is to try adjusting the IPI fil-

tration parameters. Parameter values could be increased

if there appear to be many false positives, for example, or

perhaps decreased if the number of accepted IPIs is over-

whelmingly low.

B. Note on IPI variability

Recent work by Bøttcher et al. (2018) concluded that

IPI estimates from individual sperm whales are not consis-

tent between recordings and may change significantly with

depth. Their results showed that IPI distributions from indi-

vidual whales frequently appear bimodal overall, with a

spread of about 0.2 ms. This seems inconsistent with the

high IPI precision reported in the previous literature (Schulz

et al., 2011; Antunes et al., 2010; Rhinelander and Dawson,

2004). The reason for this is likely because the IPI compila-

tion approach used by Bøttcher et al. (2018) was fundamen-

tally different. Specifically, Bøttcher et al. (2018) performed

very little filtration of individual clicks or IPIs. While the

recordings used in that study were obtained such that the

hydrophone was mostly aligned with the target whale’s

acoustic axis, such recordings still include a considerable

number of Bad clicks, as defined here. Thus, the IPI distribu-

tions presented by Bøttcher et al. (2018) necessarily had

greater variability. It is possible that the bimodal patterns

they observed were influenced not only by depth, but also by

systematic bias in IPI estimates due to slightly off-axis clicks

recorded in succession. Such a bias is not expected in the

results presented here, since only clear on-axis clicks were

retained.

IPI variation due to depth change has been hypothesized

before (Goold, 1996) and is not unexpected. However, this

should have minimal impact on our routine in most cases. A

typical sperm whale foraging dive consists of a short descent

phase during which echolocation begins, a long foraging

phase at relatively consistent depth, and a short ascent phase

(Watwood et al., 2006). Consequently, the vast majority of

clicks are produced, and therefore recorded, during the bot-

tom phase, where depth change is limited. Furthermore, any

clicks recorded from the descent phase would most likely be

off-axis, unless deliberately recording in the slick of a diving

whale. Nevertheless, if IPI sample sizes are very low, it may

be possible to obtain multimodal distributions from individ-

ual whales as they change depth. Therefore, extra care

should be taken when interpreting mixture models that have

clusters containing few samples in close proximity to one

another (e.g., centroids within 0.2 ms). Determining a reli-

able minimum number of IPIs per cluster may require further

research on IPI variability in Good clicks only.

C. Applications

The ability to measure IPIs automatically should be a

great addition to sperm whale PAM. One of the primary

goals of marine mammal passive acoustic surveys is abun-

dance estimation, since this is essential for ecosystem and

management studies (Mellinger et al., 2007). Abundance

estimates depend on the number of animals detected, which

can be difficult to obtain through acoustics alone. For sperm

whales, counting the number of peaks in IPI distributions

could be one way of doing this, with the caveat that only

whales of different size will be detected. If similar-sized

whales are present, then this count would represent an under-

estimate, unless additional information is available (e.g.,

bearing or location). IPIs would also provide information
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that is usually impossible to get from standard passive acous-

tic surveys, notably the size of each animal, and to a certain

extent, sex (mature males can be identified). This important

information must usually be obtained from visual surveys,

which are expensive and prone to limitations such as weather

and time of day. Thus, through IPIs, acoustic information

could be used to compare length and sex distributions

between areas, seasons, and different time periods, as well as

between social units (Best, 1979; Whitehead et al., 1991)

and clans (Rendell and Whitehead, 2003; Gero et al.,
2016a).

Since IPI is variable between individuals this measure

could also be used to some extent to track the movements of

individual whales or social units. For example, if multiple

sensors with the ability to determine IPIs are deployed in an

area, IPI “hits” could be compared between sensors over

time. If a particular IPI peak is detected at some hydrophone

X, and again later at another hydrophone Y, then one could

infer that the same whale has traveled from X to Y. Of

course, this kind of IPI-based telemetry would be limited by

the number of whales in an area that have similar IPIs. It

could be particularly useful, though, in areas where whales

travel in social units with stable memberships. In this case,

the signature of a unit would be a set of IPI peaks. These

peak distributions might contain a fair amount of informa-

tion that could be used to discriminate units with some

confidence.

V. CONCLUSIONS

On-axis sperm whale clicks can quite accurately be rec-

ognized by an automatic classifier. From this, an algorithm

capable of automatically compiling and analyzing reliable

sperm whale IPI distributions directly from acoustic record-

ings has been developed. The method works with only one

audio channel, and does not require knowledge of how many

whales are present, or how they are oriented with respect to

the hydrophone. Examination of the output IPI distributions

shows that they often contain clear peaks, and are compara-

ble with manually compiled IPIs. However, the method

rejects many more clicks than expected by manual compila-

tion. Fortunately, given the high click rates of sperm whales,

even relatively short recordings are likely to yield enough

IPIs to produce clear distributions, although the actual num-

ber of measures will depend heavily on whale orientation.

Based on the current implementation, filtration parameters

may need to be adjusted to accommodate different recording

scenarios. In the long term, expansion of the classifier’s

training dataset with a wider variety of clicks (e.g., from

mature males, bottom-mounted hydrophones, new regions,

etc.) may enable it to perform better under a wider variety of

scenarios. Modifications to the classification model could

also potentially improve acceptance rate.

The software should be a useful extension to sperm

whale PAM. The ability to obtain IPIs, and consequently

body length estimates from sperm whales without the need

to tag or even see them, should be a great advantage for

studying their abundance, movements, and behaviour.
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