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Guiana dolphins form social modules in a large population
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Abstract
The number and strength of social relationships are generally
the products of group living trade-offs. However, they can be at
least partially influenced by asocial factors such as the spatio-
temporal opportunities for individuals to interact. We explored
the social patterns of the largest population of Guiana dol-
phins—from dyadic interactions to the large-scale structure of
their social network—considering their use of space and demo-
graphic changes during 6 years. We found that their society
displays fission-fusion dynamics, characterized mainly by brief
associations among individuals, and is weakly structured into
four social modules. Spatial use and temporal demographic

changes had minor effects on the patterns of associations
among individuals. This suggests that the social modules un-
likely represented spatiotemporal aggregations of individuals
due to resource availability but rather involved social prefer-
ences among individuals. We show that Guiana dolphins can
form social modules even in a large population with high rang-
ing overlap and few demographic changes over time, although
these social boundaries are blurred by the dynamic nature of the
social relationships. Our findings illustrate and support the re-
cent claims for the need of taking asocial processes in account
when studying social structure of any animal species.

Significance statement
Animal social relationships are dynamic, usually
reflecting group living trade-offs. Simultaneously, they
are influenced by the opportunities individuals have to
interact. Group membership—co-occurrence in the same
space and time—is the most used proxy for describing
animal social relationships. Therefore, if the spatiotem-
poral context is not accounted for, the resultant social
structure can be misrepresented. Here, we explore the
social patterns of Guiana dolphins explicitly accounting
for space use and temporal demographic changes. We
show the largest population of Guiana dolphins displays
fission-fusion dynamics, while it is structured into four
distinctive sets of individuals. By accounting for asocial
processes, we suggest such social modules were unlike-
ly to result from unequal opportunities to interact but
rather involved social preferences among individuals.
Our findings highlight the importance of separating aso-
cial from social processes while studying animal
societies.
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Introduction

Animal social relationships are dynamic, with individuals con-
stantly responding to group living trade-offs (Krause and Ruxton
2002; Whitehead 2008). For most animal species, group forma-
tion is the fundamental requirement for social interactions (e.g.,
Whitehead and Dufault 1999). Such co-occurrence of conspe-
cifics in close proximity at the same time is convenient when
studying animal societies (e.g., Farine 2015). This is evident in
studies of aquatic animals, where limitations of underwater ob-
servations make group membership the most common working
proxy for social relationships (e.g., Whitehead 2008). The under-
lying assumption of this well-used method is that individuals
identified in the same group have opportunities to socially inter-
act (the Bgambit of the group^ hypothesis; Whitehead and
Dufault 1999). So with a succession of recorded events in which
individuals are observed in the same group, one can estimate the
strength of their social relationships via association indices (e.g.,
Whitehead 2008).

In most cases, the proportion of time individuals ob-
served together is the only information one can feed sta-
tistical methods to unravel the structure of their societies
(e.g., Croft et al. 2008; Whitehead 2008). Despite imper-
fections (Castles et al. 2014), group membership holds the
minimum requirements for social interactions (Hinde 1976;
Farine 2015) since it reflects attractive/repulsive forces
among conspecifics (Krause and Ruxton 2002). Yet, to
be meaningful, such proximity-based measures need to
account for the spatiotemporal context in which the social
interactions take place (Cantor et al. 2012a; Pinter-
Wollman et al. 2013). The social structure portrayal can
be biased if not all individuals have had opportunities to
be in close proximity. Spurious social patterns (e.g., social
modules, preferences, avoidances) can emerge due to spa-
tial or temporal segregation, such as when individuals
have strong preferences for different areas or when they
use a common area but at different times (Whitehead
1999; Wiszniewski et al. 2009; Cantor et al. 2012a).
Therefore, spatial use and demographic changes should
be investigated in parallel with social structure (Pinter-
Wollman et al. 2013).

This is especially relevant for societies with high de-
grees of fission-fusion—i.e., with groups constantly vary-
ing in size, composition, and spatial cohesion (cf. Aureli
et al. 2008). The forces driving group dynamics in such
societies are many, including, but not limited to, environ-
mental conditions and habitat complexity (e.g., tempera-
ture, topography), biological pressures (e.g., predation risk,
competition for mates and food, prey availability), and
individual assortativity (e.g., preference to interact with
individuals of the same sex, kin-related, or who behave
similarly) (e.g., Gowans et al. 2008; Whitehead and
James 2015). We have only recently started to account

for the effects of other asocial processes that can mask
the interpretation of animal social structures, such as hab-
itat structure (e.g., Leu et al. 2016), space use (e.g.,
Wiszniewski et al. 2009), movements, and demographic
changes (e.g., Cantor et al. 2012a). However, the degree
to which they drive the structure of specific animal soci-
eties, especially in aquatic environments, is relatively
unknown.

A good example of animal societies influenced by such
asocial processes are those of Guiana dolphins, Sotalia
guianensis (Cantor et al. 2012a), whose populations display
a marked variation of group size along the coastal and estua-
rine areas off the southwestern Atlantic Ocean. While typical-
ly found in groups of 2 to 13 individuals, they can form groups
of about 30 members in some populations (e.g., Santos and
Rosso 2007; Flach et al. 2008a). Guiana dolphin societies
display fission-fusion dynamics (Santos and Rosso 2008;
Lunardi and Ferreira 2014), but this evidence comes only
from small populations with small groups. It is unclear if a
similar social structure would emerge in populations were
large aggregations and groups are frequently merging and
splitting. The largest Guiana dolphin population inhabits the
Sepetiba Bay, southeastern Brazil, where their numbers are
estimated to be over a thousand (Flach et al. 2008b; Nery
and Simão 2012), and the groups frequently consist of over
hundreds of individuals (Dias et al. 2009; Nery and Simão
2012). We would expect the social structure of this population
to be influenced by asocial processes for three reasons. First,
large groupings may have lower spatial cohesion and lower
rate of social interaction, since not all members can be in very
close spatial proximity during all times. Second, a sizable
population may experience more pronounced demographic
changes. Finally, the large groupings of Guiana dolphins vary
in their spatial use of the Sepetiba Bay following fine-scale
conditions and resource availability (Dias et al. 2009).

Here, we evaluate the social patterns of the largest popula-
tion of Guiana dolphins, in Sepetiba Bay, accounting for pat-
terns of space use and potential demographic changes over a
6-year period. First, we explore the overall social pattern of
this population by testing whether individuals associate at
random or, alternatively, whether their social network is struc-
tured into modules. Second, we evaluate if the population
composition, as well as the probability of individuals to asso-
ciate, changes over time. Finally, we evaluate whether indi-
viduals from different social modules demonstrate differences
in space use. In the spatiotemporal scale considered here, we
found few demographic changes and a high overlap of rang-
ing behavior, which suggests the social modules in this popu-
lation are likely defined by social preferences among individ-
uals. Combined, these findings emphasize that asocial pro-
cesses must be taken into account to reveal a more realistic
portray of animal social structures (see Pinter-Wollman et al.
2013).
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Methods

Data sampling

From August 2005 to July 2011, we carried out 132 boat
surveys evenly distributed throughout the years and seasons
(ESM 1: Table S1) in the Sepetiba Bay, southeastern Brazil
(22° 54′–23° 04′ S, 43° 34′–44° 10′W). The Sepetiba Bay is a
large (526 km2) and shallow (8 m deep on average) coastal
bay, with three dredged channels (>30 m). The western por-
tion is connected with the Atlantic Ocean, with coarse sandy
substratum and many rocky islands; the eastern area is estua-
rine, with muddy substratum, rocky and sandy beaches, and
mangrove vegetation (Flach et al. 2008a). We designed four
predefined routes to cover the bay (ESM1: Figure S1); in each
survey, we arbitrarily chose one route and attempted to sample
all of them as equally as possible.

When a group of Guiana dolphins was sighted, we record-
ed their geographical position with a GPS, estimated the num-
ber of individuals in the group, and attempted to photograph
the dorsal fins of all individuals, with no individual prefer-
ences, using a SLR camera equipped with a 100–400-mm
lens. Individuals were identified based on the patterns of nat-
ural marks on their dorsal fins, using standard photo-
identification protocols (Hammond et al. 1990), followed up
by an independent, computer-assisted photographic matching
analysis (Stanley 1995). These primary data for social analy-
ses were recorded blindly because (a) it was not possible to
identify individuals in the field and (b) the photo-
identification was performed months later by independent re-
searchers who did not participate in the data collection. To
avoid misidentifications, individuals without distinctive
marks were not included in the analysis (Hammond et al.
1990). We analyzed over 10,000 photos, and we identified
647 distinctive dolphins.

A group of Guiana dolphins was defined as two or more
individuals in close proximity (within a circular area of 100 m
of diameter) and engaged in similar behavior and usually in
coordinated general movement (Irvine et al. 1981; Flach et al.
2008a). Dolphins from this population can form large groups
(up to 90 dolphins, 71% of the time) and aggregations of up to
450 dolphins (Dias et al. 2009). Since in large groups individ-
uals are less likely to interact among all individuals with the
same probability, we minimized the chance of recording spu-
rious interactions by analyzing only groups with less than 50
individuals. This threshold excluded the aggregations of dol-
phins from our analyses (see Dias et al 2009), in which indi-
viduals cluster due to a third factor (e.g., an available re-
source), gain no benefit from each other, and are likely to
compete (see Whitehead 2008). In total, we sampled 132
groups of dolphins (mean = 31 ± 16 standard deviation) that
met these criteria. All the data used in this work are available
from the authors upon request.

Social analyses

We considered all individuals identified in the same group to
be in association (the Bgambit of the group^ hypothesis;
Whitehead and Dufault 1999). In most surveys, we found
more than one group on the same day. We only analyzed the
photographic records of the first group encountered in each
day to ensure sampling independence among such groups that
change composition often and consequently reduce the long
time involved in the photo-identification of the immense vol-
ume of photographs taken. To calculate associations between
individual dolphins, we used the half-weight index (HWI,
ESM 1: Table S2), which ranges from 0 (never seen together)
to 1 (always seen together) (Whitehead 2008). To avoid spu-
rious associations, we only calculated association indices
among individuals sighted more than five times (Whitehead
2008) during the 6 years of survey. Therefore, our social anal-
yses included 67 out of the 647 photo-identified individuals—
the social core of the population (e.g., Silk et al. 2015).

We plotted the association matrix as a network of photo-
identified individuals (nodes) connected by weighted links
whose thicknesses were proportional to the HWI values. To
test whether this social network was structured in modules—
subsets of nodes that are highly internally connected but
weakly connected with the rest of the network (ESM 1:
Table S2)—we used an algorithm that maximized the binary
modularity metric Q (Newman 2006). A modular structure
would indicate that sets of individuals interact more often with
each other, i.e., with more and stronger association indices,
potentially delineating a Bsocial community^ within the pop-
ulation (e.g., Croft et al. 2008). To test the significance of the
modularity, we designed a null model to generate a set of 1000
of theoretical networks of the same number of nodes and links,
by randomly assigning HWI values among dyads (see Opsahl
et al. 2008) and calculatedQ for each network. We considered
the empirical network to present a reliable division into mod-
ules if itsQ-value was outside of the 95% confidential interval
of the theoretical Q-value benchmark distribution.

To further describe the network structure and grouping pat-
terns, we calculated three other metrics (ESM 1: Table S2):
weighted cluster coefficient, connectance (see Croft et al.
2008), and social differentiation (Whitehead 2008). Cluster
coefficient (CCw) is a global network metric that calculates
the probability that two nodes, A and B, connected to a same
third node, C, are themselves connected. Connectance (or
density, d) represents the proportion of realized links in the
network given the total number of possible links. High clus-
tering and connectance describe denser networks, with many
triads and short paths between individuals. Finally, social dif-
ferentiation (S) is an estimate of the coefficient of variation of
the true association indices, which informs how differentiate a
society is (S < 0.3 homogeneous, S > 0.5 well-differentiated,
S > 2.0 extremely differentiated societies) (Whitehead 2008).
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Standard errors (SE) for S were calculated with bootstrap
methods (100 iterations).

We tested the null hypothesis that individuals associate at
random (Bejder et al. 1998) by permuting individuals into
groups observed during the same 80-day sampling period,
constraining observed group size and individual capture fre-
quency. We performed 20,000 permutations (with 1000 flips
each) using a swap algorithm (Bejder et al. 1998, adapted by
Whitehead 1999). Performing the permutation test with an 80-
day period was appropriate for two reasons. First, S is maxi-
mized at 80-day sampling periods (ESM 1: Figure S3). Since
S informs how differentiated a society is, higher S-values pro-
vide more statistical power to test the null hypothesis of ran-
dom associations (Whitehead 2008) and can be used as an
indirect measure of effect size between empirical and permut-
ed datasets. Second, within 80 days, it was reasonable to as-
sume the population was closed, so we constrained the per-
mutations within these periods to minimize demographic ef-
fects (i.e., avoid grouping together individuals who never used
the area at the same time; Whitehead 1999). We also applied
this permutation test to evaluate the associations among indi-
viduals within each of the four social modules found in the
network (see the BResults^ section). In all cases, the presence
of long-term (i.e., between 80-day period) preferred associa-
tions is suggested by higher coefficient of variation (CV) of
association indices than expected by chance, while short-term
(i.e., within 80-day period) preferences are indicated by sig-
nificantly lower mean HWIs (Bejder et al. 1998). All social
analyses were performed with SOCPROG 2.5 (Whitehead
2009), except for modularity and null model analyzed in R
environment (Development Core Team R 2008) with package
igraph (Csárdi and Nepusz 2006).

Temporal analyses

Relationships are time-dependent, often decreasing in
strength over time (Whitehead 1995). We calculated the
standardized lagged association rates (SLAR) using the
entire dataset with 647 individuals to evaluate temporal
stability of associations. SLAR is an estimate of the prob-
ability that if two individuals are associated at any time,
the second is a randomly chosen associate of the first after
the specified lag (Whitehead 1995). It accounts for cases
in which not all of the true associates of an individual are
recorded during a sampling period (Whitehead 2008),
what is probably the case for this large population. We
compared the observed SLAR with the null expectancy
in which individuals associate randomly (standardized
null association rates; Whitehead 1995).

To describe the decay in the association probabilities
over time, we fitted theoretical exponential decay models
to the observed SLAR, selecting the most parsimonious
with quasi-likelihood Akaike Information Criterion

(QAIC, Whitehead 2008), which accounts for over disper-
sion of the data (Burnham and Anderson 2002). The fitted
models were the following: SLAR1 (g ′ = a) represents no
change in SLAR with lags of one sampling period or
more, suggesting that associations are constant during
the study. SLAR2 (g ′ (t) = a. e− b ⋅ t) represents briefer as-
sociations with possible re-associations, suggesting casual
acquaintances and rapid disassociation in a large popula-
tion. SLAR3 (g ′ (t) = a + c. e− b ⋅ t) represents associations
which fall with time lag and then level off, suggesting
many brief associations along with others that last for
longer periods. SLAR4 (g ′ (t)t(t) = a. e− b ⋅ t + c. e− d ⋅ t) rep-
resents two levels of disassociations, perhaps the fission/
fusion of nearly permanent social associations forming
and segregating, into and out of groups, or leaving the
area/dying. SLAR and model fitting were performed using
SOCPROG 2.5 (Whitehead 2009).

Changes in population composition

In open populations, individuals can emigrate and immigrate, so
population composition can change over time and potentially
influence social structure. To test if there were pronounced
changes in the population during the study period, we calculated
the turnover of individuals across different subsections of study
duration. We split the total survey period (72 months) in smaller
periods of 36, 18, 9, 6, and 4 months and compared population
turnover (i.e., the differences in the presence of individuals) be-
tween subsequent periods, with theWhittaker dissimilarity index
(Cantor et al. 2012a). To test the significance of the observed
turnover, we compared the averaged dissimilarity index with
benchmark distributions generated by a null model that random-
ized individuals among periods of time (1000 iterations) but
restricting the individual sighting frequency. Significantly high
dissimilarity values (falling outside of the 97.5 % confidence
interval) would represent high turnover of individuals, i.e., that
the population composition changed pronouncedly; conversely,
significantly low values (outside of the 2.5 % CI) would repre-
sent a rather stable population composition (e.g., Cantor et al.
2012a).

Spatial analyses

We analyzed the ranging behavior of dolphins that were
photo-identified more than five times using the Quantum
GIS 2.4 Software (QGIS Development Team 2014). The geo-
graphical positions of each individual from all four social
modules found on the network (see the BResults^ section)
were plotted using a universal transverse Mercator projection
with a WGS84 map datum. To avoid autocorrelation, a max-
imum of one sighting point per individual per day was used,
thus enabling each sighting to be considered an independent
data point.
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Because the individual sighting frequency was highly var-
iable and most of the individuals were sighted only a few
times, we were unable to estimate individual space use with
reliable accuracy. Therefore, we estimated the spatial range of
each social module, combining the sightings of all individuals
of a given social module. We used fixed kernel utilization
density estimates (KDEs) with the Bad hoc^method for deter-
mining the optimal smoothing parameter (Worton 1998). We
estimated the core area of a social module as the 50 % density
volume contour, while the 95 % volume contours represented
the home range.

Different spatial use of the bay could be expected for this
Guiana dolphin population because daily formation of two
groups or aggregations (over a hundred individuals) has been
observed in two different parts of the bay: entrance and the
interior (Flach et al. 2008a; Dias et al. 2009). To test whether
social preferences influenced the individual’s choice of habitat
selection, we calculated the overlap of space use among social
modules. We assessed whether within-module assortative
mixing occurred by calculating the overlap among the core
area (50 % KDEs), and home ranges (95 % KDEs) of the
social modules, with the Utilization Distribution Overlap
Index (UDOI) and the probability of overlap (PHR) (Fieberg
and Kochanny 2005). UDOI is a generalization of a niche
overlap measure and gives the overlap of areas utilized by
the groups of dolphins; UDOI <1 indicates less overlap rela-
tive to uniform space use, whereas UDOI >1 indicates higher
than normal overlap relative to uniform space use (Fieberg
and Kochanny 2005). PHR estimates the volume under the
utilization distribution of all individuals from a given social
module that is inside the home range of another module (i.e.,
the probability to find an animal of a module within the home
range of individuals of another module). Low overlap on each
of these metrics would mean that each social module uses a
specific, separate region on the studied area.

Results

Social patterns

The Guiana dolphin social network presented high clustering
coefficient (CCw = 0.58) and connectance (d = 0.46), indicating
large number of associations among individuals. Yet, the net-
work was modular (Q = 0.133, 95 % CI = 0.060–0.083), with
four social modules of individuals that tended to associate more
among themselves (Fig. 1). The overall association pattern was
not random: the coefficient of variation (CV) of the observed
association indices (HWI) was higher than expected by chance
(Table 1) indicating there were long-term association prefer-
ences in the population. Within social modules, only module
1 contained such long-term associations (Table 1). The relative-
ly low social differentiation (S = 0.235 ± 0.048 SE) suggested a

rather homogeneous society; thus, we note that the size of dif-
ferences between the CVs of the empirical and random HWI is
not particularly marked, despite statistical significance
(Table 1).

Temporal patterns in associations

The SLARwere significantly higher than expected by chance,
for at least a period of 1000 days (Fig. 2). The overall proba-
bility of association was low and clearly decayed over time.
The most parsimonious model describing this decay was the
SLAR2, suggesting that associations were brief (dubbed as
Bcasual acquaintances^). No other model provided support
for the observed SLAR, as shown by the ΔQAIC and QAIC
weights (Table 2).

Changes in population composition

The turnover of individuals was significantly lower than ex-
pected by chance, especially in short periods of time, suggest-
ing that the population composition did not change substan-
tially during the study period (Fig. 3). This was clearer for
periods of as long as 24 months and also applied for the turn-
over among periods of 36 months, which was very low. This
showed that the social core of the population used the study
area for the entire study period and, in theory, all individuals
analyzed here had opportunities to associate with each other
during the study period. This makes demographic changes via

Fig. 1 Social network of Guiana dolphins from Sepetiba Bay. Nodes
representing individuals (seen more than five times) which are
connected by links whose thicknesses are proportional to their half-
weight association indices. Node size is proportional to the number of
associates (node degree), and color code indicates social modules: mod-
ule 1 (red), module 2 (green), module 3 (blue), module 4 (purple)
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immigration/birth and emigration/death unlikely drivers of the
modular structure observed in the social network (Fig. 1).

Space use versus large-scale social structure

There was great overlap in the 95 % KDE among all four
social modules and variable overlap in the 50 % KDE core
areas (Fig. 4). The total ranging of the social modules was
highly overlapped (PHR 95 % varying from 0.72 to 0.99,
UDOI 95 % varying from 0.95 to 1.59), while there was less
overlap of core areas (PHR 50 % varying from 0.19 to 0.76,
UDOI 50 % varying from 0.16 to 0.36). All KDE overlap
values are available in the ESM 1: Table S3. The spatial over-
lap of social modules also suggested that differences in space
use are minor and an unlikely driver of the modular structure
of the social network (Fig. 1).

Discussion

Our findings agree that Guiana dolphins form societies with
fission-fusion dynamics (Cantor et al. 2012a; Lunardi and
Ferreira 2014), but more importantly, they show that the larg-
est population of Guiana dolphins is structured into social
modules. Although not entirely distinctive, these modules
emerge in a population with high ranging overlap and little
demographic changes. By accounting for these asocial pro-
cesses, our results suggest that social choices and individual
preferences play an important role shaping the large-scale so-
cial structure of this population. Our study illustrates and sup-
ports the importance of separating asocial from social process-
es while studying animal societies.

The Guiana dolphins of Sepetiba Bay are organized in a
highly fluid, yet structured, society. Their social network is
highly connected and includes clustered relationships, mean-
ing that most of the individuals tend to interact (or form
groups) at some point. In comparison to other dolphin popu-
lations (e.g., Lusseau et al. 2006; Wiszniewski et al. 2009;
Cantor et al. 2012a), the social network of Guiana dolphins
from Sepetiba is denser, with overall briefer associations,
which is characteristic of large populations and highly dynam-
ic social systems (Whitehead 2008). In fact, among Guiana
dolphins, the group size and composition tend to change rap-
idly—about every 20 min (Lunardi and Ferreira 2014)—in
agreement with the common fission-fusion dynamics found
in coastal small cetaceans (e.g., Wells et al. 1987;
Wiszniewski et al. 2009). We suspected the larger groupings
observed in Sepetiba Bay could be even more dynamic, since
the actual rate of interaction among members would be small-
er due to lower spatial cohesion in such large groups (Flach
et al. 2008a; Dias et al. 2009). Despite the general brevity of
associations, the population contains non-random associa-
tions, suggesting that pairs of individuals display social pref-
erences over longer time periods. This combination of social

Table 1 Summary of
permutation test results for
preferred associations among the
entire Guiana dolphin network
(all) and by social module (1–4),
considering only individuals seen
more than five times

Social
module

N Observed mean
HWI

Random mean
HWI

p
valuea

Observed CV
HWI

Random CV
HWI

p
valueb

All 67 0.095 0.934 0.793 1.23 1.236 0.007*

1 18 0.103 0.099 0.968 1.386 1.153 0.001*

2 17 0.107 0.106 0.698 1.042 1.113 0.918

3 15 0.068 0.069 0.149 1.646 1.583 0.186

4 17 0.121 0.12 0.655 1.067 1.053 0.337

N number of individuals, Observed empirical data, Random permuted data, Mean HWI mean half-weight asso-
ciation index, CV HWI coefficient of variation of HWI

*Significant difference between the summary statistic for the empirical and random data at the p < 0.05 level using
1000 iterations
a Significantly lower mean HWI for the observed data would suggest short-term (within the sampling period)
preferred associations
b Significantly higher CV for the observed data suggests long-term (between the sampling period) preferred
associations

Lag (Day)
102 103

S
ta

nd
ar

di
ze

d 
A

ss
oc

ia
tio

n 
ra

te

10-3

0

1

2

3

4

5

6  Null
 Lagged

(4.22*10-3)*exp-[(0.34*10-3)*t]

Fig. 2 Lagged association rates among all individuals of Guiana dolphin
identified in Sepetiba Bay (thin black line). The best fitted model (thick
black line) suggests associations are mainly brief (SLAR2, Table 2) and
higher than the null association rates (dashed line). Whiskers represent
standard errors estimated by a jackknife procedure
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fluidity with individual social preferences leads to a social
network structured into weakly marked social modules.

Societies structured into modules (or Bsocial communities,^
Bsocial units^) are recurrent across vertebrates (e.g., Lusseau
et al. 2006; Gero et al. 2015). Such modular structure reflects
the heterogeneity in social contact among individuals. Time and
space are basic factors affecting the emergence of social mod-
ules, especially in very dynamic societies (Cantor et al. 2012a).
Indeed, social modules in dolphin societies characterized by
fission-fusion dynamics can result from spatially (e.g.,
Wiszniewski et al. 2009; Titcomb et al. 2015) or temporally
segregated individuals (e.g., Cantor et al. 2012a). Our findings
suggest that the modular structure of the Sepetiba Guiana dol-
phin population reflects social processes, rather than temporal
demographic changes or variation in spatial use.

First, we considered the possibility of demographic ef-
fects, namely whether the population composition
changed over the study period. Since our study span
(6 years) is a short window in the life span of Guiana

dolphins (about 30 years, Rosas et al. 2003), we would
not expect pronounced demographic changes due to mor-
tality or births. However, movements of individuals—
temporary and permanent immigration and emigration—
can yield significant population turnover in a population
with high survival and/or low mortality (Cantor et al.
2012a, b). Although bounded habitats (e.g., bays
protected from open oceans) often contain dolphin popu-
lations with high site fidelity and limited dispersal (Wells
et al. 1987), not all members of the population are neces-
sarily present in the area at all times (e.g., Cantor et al.
2012a). Dolphins, notably the sub-adults and males, may
roam over larger areas (Wells et al. 1987). Thus, the de-
gree of site fidelity may vary within the same population,
with some individuals being resident and others more
transient (i.e., leaving or passing through the study area;
Cantor et al. 2012b). The turnover of Guiana dolphin in-
dividuals in Sepetiba Bay is apparently small, seen during
this study through the lack of pronounced changes in
composition of the social core of the population (i.e., the
more resident and frequently re-sighted individuals). This
fact corroborates the lack of individual exchange between
Sepetiba Bay and the closest, almost contiguous, popula-
tion of Ilha Grande’s Bay, in which individuals differ ge-
netically (Hollatz et al. 2011), in diet preferences (Bisi
et al. 2013), feeding tactics (Oliveira et al. 2013), and
whistle characteristics (Andrade et al. 2014). We highlight
that by focusing on the social core, we reduced spurious
relationships and population changes due to individual
movement of individuals; but still, we can yield a signif-
icant portray of the Guiana dolphin social system since
partial social networks based on fluid associations are
robust to unknown individuals (e.g., Silk et al. 2015).

Second, while the social core of the population used the
Sepetiba Bay during the same time, we further considered
whether individuals from different social modules had pre-
ferred areas within the bay. Guiana dolphin groups could use
the entire bay in Sepetiba, but the spatial use is heterogeneous
(Dias et al. 2009) as seen in other populations (e.g., Wedekin
et al. 2007). In Sepetiba Bay, Guiana dolphins prefer areas
close to the natural channels and rocky islands, which are

Table 2 Theoretical exponential decay models fitted to empirical
standardized lagged association rates (SLAR) found for individuals of
Guiana dolphin in Sepetiba Bay from 2005 to 2011, ranked by the lowest

Quasi-likelihood Akaike Information Criterion (QAIC) values. The
ΔQAIC, the QAIC weight, and model likelihood indicate the relative
support for each model

Models Formulae QAIC ΔQAIC QAIC weight Likelihood

SLAR2
g0 tð Þ ¼ 4:22� 10−3

� �
⋅e− 0:34 � 10−3ð Þ½ ⋅t�

6477.97 0.00 0.99 0.99

SLAR1 g ′ (t) = 3.45 × 10− 3 6488.09 10.12 0.01 0.01

SLAR3 g ′ (t) = (3.44 × 10− 3) + 111.64 ⋅ e(−9.65 ⋅ t) 6490.18 12.21 0.00 0.00

SLAR4
g0 tð Þ ¼ 4:27� 10−3

� �
⋅e− 0:35 � 10−3ð Þ½ ⋅t�−0:25⋅e− 1:09⋅tð Þ

6543.95 65.98 0.00 0.00
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Fig. 3 Population turnover in different periods of time. The total survey
period (72 months in 6 years) was divided in smaller sections (12 periods
of 6 months, 8 periods of 9 months, 6 periods of 12 months, 4 periods of
18 months, 3 periods of 24 months, and 2 periods of 36 months) to
evaluate possible changes in composition of the population. Top axis
gives the number periods in which the total study was divided into; x-
axis gives the length of such periods; y-axis gives our measure of
population turnover, the average Whittaker dissimilarity index between
subsequent periods (white circles); and whiskers represent 95 %
confidence interval of a benchmark distribution generated by a null model
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deeper (10–47m; Flach et al. 2008a; Dias et al. 2009) and may
be used as a barrier for herding fish schools (e.g., Rossi-Santos
and Flores 2009). Furthermore, deeper areas have influx of
cooler water from cold currents. These areas may represent
channels for fish entrance in the bay, since Sepetiba Bay is an
important area for fish reproduction and cold water can also be
important for dolphin’s thermoregulation (Yeates and Houser
2008). While the core areas of the social modules were slight-
ly more discrete (perhaps due to some degree of spatial pref-
erence or attempt to reduce competition), the overall ranging
area of all social modules within the bay clearly overlapped.

Combined, the high spatial overlap and small demographic
changes over time suggest that all individuals had, at least
theoretically, the possibility to associate with one another.
Therefore, the modular structure suggests the influence of
social or ecological drivers. In the marine environment, mod-
ular social structure is evident in multilevel societies, such as
in orca and sperm whales, in which natal philopatry lead to
matrilineal social units or modules (e.g., Ford et al. 2000; Gero
et al. 2015). But social modules in societies with fission-
fusion dynamics (e.g., Lusseau et al. 2006) may emerge due
to simpler processes. For instance, prey availability or preda-
tor risk might aggregate or disperse individuals (Stanford
1995), as well as biological traits (such as sex, age, kinship,
behavioral similarity) may make a subset of individuals more

prone to interact within each other than with the rest of the
population (e.g., Daura-Jorge et al. 2012). Moreover, individ-
ual behavioral variation (e.g., personality; Croft et al. 2003)
and social preferences (e.g., familiarity; Kurvers et al. 2013)
can influence these relationships. We found some individual
social preferences among the Guiana dolphins in Sepetiba, but
the overall dynamic nature of their social relationships com-
plicated the identification of boundaries among social mod-
ules. At the moment, we can speculate that individual prefer-
ences and avoidances underlay, in the broadest sense, the for-
mation of social modules. As more detailed data at the indi-
vidual level becomes available, one will be able to sort out the
contribution of these biological traits in social preferences
(e.g., Whitehead and James 2015) that ultimately shape the
modular structure of this society.

Conclusions

Our study reinforces that Guiana dolphin societies are dynam-
ic, especially in the largest population where individuals form
the largest group. However, we also show that this society is
organized into social modules. By weighing the influence of
asocial processes, we suggest that social modules are not sim-
ply a product of unequal opportunities for individuals to
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Fig. 4 Kernel density estimate (KDE) for each of the four social modules
in Sepetiba Bay.Dots represent distinct group of animals, with color code
following the social network: amodule 1, bmodule 2, cmodule 3, and d

module 4. The red shades represent the core area (50 % KDE), and the
blue shades represent the distribution area (95 % KDE) of the social
module
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interact but rather that they are formed through social choices.
Nevertheless, we acknowledge that the low social differentia-
tion and highly dynamic association characteristics of Guiana
dolphins blur the boundaries among social modules, and
therefore, it remains unclear to what extent the modular social
structure is delineated by individual social preferences. A
more comprehensive portrayal of this dolphin society would
include individual information, such as variation in sociability
and gregariousness or assortativity based on biological traits.
In addition, comparisons with other Guiana dolphin popula-
tions—which vary markedly in basic social metrics such as
group size (e.g., Santos and Rosso 2007)—and other ecolog-
ically equivalent species—such as humpback dolphins Sousa
spp.—would be very informative in the search of common
underlying mechanisms shaping societies of delphinids. In
all cases, we emphasize the need to take into account the
influence of the spatiotemporal contexts in which social rela-
tionships take place (Pinter-Wollman et al. 2013)—an ever-
changing feature in societies characterized by fission-fusion
dynamics.
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