
- 1 -

CABLE: Cachalot Automatic Body
Length Estimator
User Manual
Written by Wilfried Beslin
Updated December 16, 2018
Software version: 1.0

TABLE OF CONTENTS

1. INTRODUCTION .. - 3 -

1.1 What is CABLE? ... - 3 -

1.2 Background: sperm whale IPIs and acoustic length estimation - 3 -

1.3 How does CABLE work? .. - 3 -

1.3.1 Filtering of IPIs .. - 4 -

1.3.2 Clustering of IPIs ... - 4 -

1.4 Limitations ... - 4 -

1.4.1 Filter selectiveness ... - 5 -

1.4.2 Interpretation of IPI clusters.. - 5 -

1.4.3 Recording quality ... - 5 -

1.4.4 Training dataset ... - 6 -

1.4.5 Other issues: software quirks and inconveniences - 6 -

1.5 Feedback and bug reports .. - 7 -

1.6 Authors and Citation .. - 7 -

2. USAGE OVERVIEW .. - 8 -

2.1 Requirements and installation ... - 8 -

- 2 -

2.2 Running the program ... - 9 -

3. IPI COMPILATION .. - 9 -

3.1 Data input .. - 10 -

3.1.1 Types of input .. - 10 -

3.1.2 Specifying the input path .. - 11 -

3.1.3 Example input files ... - 12 -

3.2 Parameters ... - 12 -

3.3 Data output .. - 13 -

3.3.1 Specifying the output path .. - 14 -

3.3.2 Output data files .. - 14 -

3.3.3 Output cluster plots .. - 15 -

3.3.4 Length estimation .. - 15 -

3.4 Running IPI compilation ... - 16 -

4. CLUSTER PLOTTING .. - 17 -

4.1 Loading and displaying plots ... - 19 -

4.2 Plot display and saving options .. - 20 -

4.3 Adjusting plot appearance .. - 21 -

5. ADVANCED SETTINGS ... - 25 -

6. REFERENCES ... - 31 -

- 3 -

1. INTRODUCTION

1.1 What is CABLE?

CABLE is a tool capable of automatically estimating how many sperm whales are present in an
audio recording, and how large they are. It does this by compiling and clustering stable inter-
pulse interval (IPI) distributions from sperm whale clicks it has detected in the recording. The
program was written with MATLAB version R2015a (The MathWorks, Inc.), and uses the Signal
Processing Toolbox, the Statistics and Machine Learning Toolbox, the Curve Fitting Toolbox, and
the Parallel Computing Toolbox.

The program was developed with two important goals in mind:

 Flexibility
CABLE was designed to be usable even with very limited recording equipment and field
protocols. It only requires a single audio channel, and it does not rely on knowledge of
how many whales are present, or what their orientations are with respect to the
receiver.

 Automation
CABLE is completely automatic. The only user input needed is the initial specification of
data files and routine parameters.

1.2 Background: sperm whale IPIs and acoustic length estimation

Sperm whale clicks are unique in that an individual click contains multiple pulses (Backus &
Schevill 1966). These pulses are the result of a single sound pulse reverberating through the
spermaceti organ (Norris & Harvey 1972; Møhl 2001). Consequently, the inter-pulse interval is
directly related to the size of the spermaceti organ. Since there is a relationship between
spermaceti organ size and total body length (Nishiwaki et al. 1963), it is possible to estimate a
whale’s body length simply by measuring the IPI of its clicks. This relationship has been well
established in the literature (e.g. Norris & Harvey 1972; Møhl et al. 1981; Adler-Fenchel 1980;
Gordon 1991; Rhinelander & Dawson 2004; Growcott et al. 2011).

1.3 How does CABLE work?

It is often difficult to obtain reliable IPI measures automatically. This is because the “true” IPI
(that is, the IPI that corresponds to spermaceti organ length and ultimately body length,) is
usually obscured by undesirable pulses when clicks are recorded off the whale’s body axis
(Zimmer et al. 2005). CABLE works around this problem by attempting to use IPIs only from
clicks that appear to be on-axis. This approach makes it possible to compile reliable IPI
measures from multiple whales clicking simultaneously, without the need to localize individuals
or separate their click trains.

- 4 -

1.3.1 Filtering of IPIs

CABLE filters out unsuitable IPIs through a series of steps, which include automatic click
classification, IPI precision testing, and IPI repetition testing.

 Click classification
CABLE uses a machine learning technique to classify clicks. This involves the application
of a classifier that has been trained to distinguish on-axis sperm whale clicks (“Good”)
from other transients (“Bad”) based on a series of temporal and spectral features.

 IPI precision
There are two common methods for computing IPIs automatically: autocorrelation
analysis, and cepstral analysis (Goold 1996). CABLE uses both methods simultaneously,
and computes the average IPI for each click. To reinforce confidence in the reliability of
an IPI, it must be precise; that is, both methods must agree on the same value, within a
certain tolerance.

 IPI repetition
Sperm whales regularly produce about 1-2 clicks per second while foraging (Backus &
Schevill 1966; Whitehead & Weilgart 1990). Since sperm whales also move relatively
slowly, changes in click structure due to recording aspect are gradual. In other words,
neighboring clicks in a time series are structurally very similar. Because of this,
individual IPI measures are expected to be repeated locally in time. CABLE uses this
property to further validate the reliability of each IPI.

1.3.2 Clustering of IPIs

After all IPIs have been filtered and compiled, CABLE examines the resulting distributions to
infer how many sperm whales are present, and what their body sizes are. This is done by
clustering IPIs using Gaussian mixture models (GMMs). Each cluster is considered to represent
an individual whale, where the cluster mean is an estimate of the whale’s “true” IPI. Cluster
means are used to infer body length.

Gaussian mixture modelling often yields several plausible solutions. These solutions can be
compared based on the Bayesian Information Criterion (BIC). The model with lowest BIC is the
one that is most supported by the data. CABLE outputs each model ranked by lowest BIC. Each
model has a reported ΔBIC value, where ΔBIC = 0 indicates the “best” model.

1.4 Limitations

CABLE does has a few issues that users should be aware of. This includes limitations to the IPI
compilation method itself, and also minor inconveniences in the implementation.

- 5 -

1.4.1 Filter selectiveness

The quality control procedure that CABLE uses to isolate reliable IPIs is highly aggressive. With
default parameters, it is common for over 99% of clicks to be rejected. There are two reasons
for this. The first reason is that on-axis clicks are usually much rarer than off-axis clicks. The
second reason is because the filter was deliberately designed to be stringent. This compromise
was made because false positives are a much greater concern than false negatives in this case.
The clustering algorithm is sensitive to noise, so a few false positives can lead to erroneous
conclusions. At the same time, IPIs are precise enough that only a few true positives are needed
to form a pattern. Since sperm whales click very frequently, it is generally not an issue to obtain
enough samples for something to be detected.

Longer recordings are more likely to return useful results, but this is not a guarantee. The
number of IPIs measured depends greatly on how much time a whale spends in alignment with
the hydrophone, and this can vary considerably between recordings. When tested using 4-
minute recordings with sperm whales present, CABLE yielded IPIs in several cases, but there
were many others where it did not.

Resist the temptation to set filtration parameters to very low thresholds. This can result in
spurious IPI distributions.

1.4.2 Interpretation of IPI clusters

As noted previously, the clustering algorithm is sensitive to noise: it will attempt to include
every IPI it is given into a cluster. With default parameters, the IPI filtration routine is very good
at eliminating spurious values, so this is generally not a problem. However, incorrect values do
make it into the filtered distributions from time to time. For this reason, be cautious about
drawing conclusions from very small clusters. As a general rule, clusters that contain very few
IPIs (e.g., < 5) should not be trusted. If an IPI distribution contains many small clusters, a good
course of action is to increase the filtration parameter values (discussed in section 3.2
Parameters). Clusters that persist under very strict parameter values are more likely to be real.

In regards to the selection of clustering models, BIC is quite good at finding the most correct
model, but it is also not perfect. There are some cases where slightly less favoured models are
actually more appropriate. When this does happen, it is often when there are two or more very
narrow clusters (e.g., SD ≤ 0.02 ms) that are very close or overlapping with one another. In
these cases, the multiple clusters could potentially be a single cluster. This uncertainty becomes
greater when one or more of the clusters in question have very few IPIs. Therefore, a certain
amount of judgement should be used when selecting models for ambiguous IPI distributions.

1.4.3 Recording quality

Reliable IPIs can only be obtained from high quality clicks where the multi-pulse structure is
clear. Therefore, CABLE is unlikely to detect anything if recording quality is very poor. Factors

- 6 -

that complicate IPI calculation include low signal-to-noise ratio, surface reflections, and
significant reverberation.

If recording from the surface, ensure that the hydrophone is as deep as possible. Surface
echoes with a time delay of arrival shorter than an IPI will always result in contaminated clicks
that will likely be classified as “Bad”. When this is the case, no amount of recording time will
yield a useful IPI distribution.

1.4.4 Training dataset

The classifier CABLE uses to recognize on-axis sperm whale clicks was created using a “training”
dataset. This dataset consisted of several thousand click samples, where each was manually
labelled as being “Good” or “Bad”. All clicks in this dataset were recorded near the surface off
the coast of Dominica, where only female and juvenile sperm whales were present. Because of
this, it is possible that CABLE could have a bit more difficulty identifying “Good” clicks from
different scenarios (e.g., large males, bottom-mounted recorders, etc.) This remains to be seen.

1.4.5 Other issues: software quirks and inconveniences

CABLE has a few issues in usability that unfortunately cannot be resolved. These are a
consequence of CABLE being a compiled MATLAB application.

 Loading and closing time
CABLE usually takes a very long time to start (sometimes more than one minute). This
occurs because MATLAB Runtime needs to be loaded, and MATLAB Runtime is a very
large application. If parallel computing is enabled (the default), then CABLE may also
take a couple of seconds to close, making it appear unresponsive. This occurs because
MATLAB needs time to close the "pool" it has created on the parallel computing cluster
(which is just the local cores in this case).

 Firewall warnings
If CABLE is using parallel computing for the first time, you may receive firewall warnings
about "cable.exe" and "ctfxlauncher.exe". This is likely because MATLAB's parallel
computing functions automatically request network access, should they need to find a
particular computing cluster. Note that CABLE does not actually support this feature;
only local CPU cores are used. Thus, these warnings do not really apply. CABLE will
function normally whether or not you allow network access.

- 7 -

 Console warnings
If you happen to run CABLE from the command prompt, you may see a few warnings.
Some of these are simply updates returned by CABLE as it processes a file, such as
"GMM invalid... Insignificant clusters". Others are internal to MATLAB and may be bugs.
This includes "Could not launch SMPD process manager" and "Objects of
fdopts.sosscaling class exist – not clearing this class or any of its superclasses". Neither
of these seem to have any adverse effects on CABLE.

1.5 Feedback and bug reports

The latest version of CABLE is 1.0. This is the first public release. The algorithm has now been
peer-reviewed, and development and beta tests have found no major bugs in the software.

While bugs are unlikely, it cannot be guaranteed that the software is completely bug-free. In
the case of unexpected crashes or failures, CABLE will attempt to record the error details in a
text file. If you do encounter any bugs while using CABLE, or if you have suggestions for
improving its usability, please contact the developer at wilfried.beslin@dal.ca. In the case of
bug reports, please include the error files, if any.

Since this version was built entirely based on data from Dominica, I would also be very
interested to know how well it performs in other regions – especially if you are recording
mature males, or if you use bottom-mounted hydrophones.

1.6 Authors and Citation

This program was developed by Wilfried Beslin as part of a Master of Science thesis at
Dalhousie University, Halifax, Nova Scotia, Canada. It was developed under the supervision of
Hal Whitehead, with the collaboration of Shane Gero. This work emanates from The Dominica
Sperm Whale Project: http://www.thespermwhaleproject.org Follow: @DomWhale

The algorithm used by CABLE is described in:

Beslin, W. A. M., Whitehead, H., and Gero, S. (in press). “Automatic acoustic estimation
of sperm whale size distributions achieved through machine recognition of on-
axis clicks”. The Journal of the Acoustical Society of America.

Please cite this article if you use CABLE.

mailto:wilfried.beslin@dal.ca
http://www.thespermwhaleproject.org/

- 8 -

2. USAGE OVERVIEW

2.1 Requirements and installation

CABLE is a standalone application built for the Windows operating system using MATLAB
Compiler and MATLAB version R2015a. It will only work on Windows operating systems (64-bit).

MATLAB itself is not needed to run CABLE. However, unless you happen to have a full
installation of MATLAB R2015a and MATLAB Compiler SDK, you will need MATLAB Runtime.
MATLAB Runtime is made freely available by The Mathworks, Inc. at:

 https://www.mathworks.com/products/compiler/matlab-runtime.html.

Before running CABLE, make sure you have downloaded and installed MATLAB Runtime
R2015a (8.5).

CABLE itself comes in a "zip" folder and does not require installation. Simply place the program
directory anywhere where you have write and execute permissions. The program directory
should contain each of the following files and folders:

 CABLE.exe
The main executable. Use this to run CABLE.

 Examples
Directory containing sample input files for demonstration (see section 3.1.3 Example
input files).

 LengthEquations
Directory used for storing data to convert IPIs to body length (see section 3.3.4 Length
estimation).

 Output
An initially empty directory, provided as the default for storing output files (see section
3.3 Data output). Files inside this directory may be deleted without harm.

 UserManual.pdf
This document

 splash.png
An image displayed while the application is loading.

https://www.mathworks.com/products/compiler/matlab-runtime.html

- 9 -

2.2 Running the program

Run CABLE by clicking CABLE.exe in the program directory. Note that it may take a (very) long
time to load. Unfortunately, there is no simple way around this – it is a limitation of MATLAB
applications (see section 1.4.5 Other issues: software quirks and inconveniences).

The program is controlled via a (non-resizable) graphical user interface (GUI). The GUI window
contains three tabs: Main, Plotting, and Advanced Settings.

 Main
This tab is where IPI compilation is set up and run. It also displays the current status of
the application. See section 3. IPI Compilation for details.

 Plotting
This tab controls the display, appearance, and saving of IPI cluster plots. See section 4.
Cluster Plotting for details.

 Advanced Settings
This tab is where advanced parameters affecting the IPI compilation routine can be set.
It is generally not necessary to access this tab. See section 5. Advanced Settings for
details.

All tabs provide options for entering data, including editable text fields. If an entry in a text field
is invalid, the field will turn red and may be accompanied by a warning message. Certain
functions will not execute until all their dependent fields contain valid entries.

If you are using CABLE for the first time, it is recommended that you try running some of the
example files before doing anything else. One of these files, a 4 min and 45 sec WAV file of
sperm whales from Dominica, is pre-loaded on start-up. To see what CABLE can do, just press
the large "Run" button on the Main tab. An IPI distribution will be compiled from the pre-
loaded file. On a modest laptop computer, this file takes about 4 minutes to process. For more
information on the other example files, see section 3.1 Data input.

3. IPI COMPILATION

IPI compilation is controlled in the Main tab (Figure 1). Use this window to specify input data,
the types of output desired, and run the routine.

- 10 -

Figure 1: The Main tab

3.1 Data input

Data to input for IPI compilation is specified under the INPUT > File or Directory panel at the top
left. Input is specified in the form of a path string to a file on your hard drive. When IPI
compilation starts, the program will attempt to read the contents of the specified path.

3.1.1 Types of input

The program is capable of processing various types of input. The input path may point to an
individual file, or to a folder containing multiple files. The folder option is designed to facilitate
automation: each file within will be processed independently, effectively the same as if they
had been specified manually one after the other. Any corrupted or unrecognized files will be
skipped. The accepted file types are listed below:

 Audio file
The most basic input option is a WAV sound file* containing sperm whale clicks
recorded in the field. CABLE will scan these files and detect clicks automatically. These

- 11 -

clicks will be subsequently classified as being either on-axis sperm whale clicks or not.
Audio inputs can have any number of channels, but only one channel is processed
(usually the first, but this can be changed; see section 5. Advanced Settings). Audio
inputs can also have any sampling rate, but note that IPI compilation is always done at
48 kHz. If a file’s sampling rate is different from 48 kHz, it will be resampled
automatically.
* The program has only been tested using WAV files. It is possible that other sound file
types will work too, but these are not officially supported.

 Full IPI file
One of the outputs that can be created by CABLE after processing an audio file is a full
IPI file (see section 3.3.2 Output data files). A full IPI file consists of a list of IPIs for
every click that has been detected in an audio file, along with their time of occurrence
and classification score. This type of file can also be used as input. When a full IPI file is
input, the routine will filter those IPIs based on the filtration parameters. Full IPI files
have the advantage that they are very quick to process, since clicks have already been
detected and classified.

 Filtered IPI file
Another type of output created by CABLE is a filtered IPI file (see section 3.3.2 Output
data files). A filtered IPI file consists of a list of IPIs that have already been validated.
These can be used as input for clustering. Filtered IPI files are the quickest to process,
but also the least flexible, since their filtration parameters cannot be changed.

 Audio Directory
When the input path points to a directory, the files within are processed separately.
However, using this option, it is also possible to group audio files together. To do this,
create a nested directory within the main input folder. All files within this subdirectory
will be pieced together as if they were one file. Note that this is only supported for
audio files; full and filtered IPI files cannot be grouped.

3.1.2 Specifying the input path

There are three ways to specify the input path:

 Direct Entry
The input path can be entered directly in the edit field inside the INPUT > File or
Directory panel.

 Select Single File button
Use this to browse for a single file to input.

- 12 -

 Select Directory button
Use this to browse for a folder to input.

3.1.3 Example input files

Included in the program directory are several example files intended to demonstrate every type
of input. These files consist of sperm whale recording data taken off the coast of Dominica in
March and April 2015, as part of the Dominica Sperm Whale Project (DSWP). The files are
located in the Examples folder, and include the following:

 DOM_20150302_AllIPIs.csv (Full IPI file)

 DOM_20150302_FilteredIPIs.csv (Filtered IPI file)

 DOM_20150319.wav (Audio file)

 DOM_201504 (Audio directory; contents listed below)
o DOM_20150406.wav
o DOM_20150407a.wav
o DOM_20150407b.wav

You can run the WAV and CSV files individually, or you can set the whole Examples folder as the
input path. If you run the Examples folder, all the files in the DOM_201504 subfolder will be
treated as a single recording. You could also run the DOM_201504 folder directly, but in this
case, all the files within will be treated separately.

To keep the Examples and program directories clean, it is recommended that you do not use
the Use Input Parent button (discussed in section 3.3.1 Specifying the output path).

3.2 Parameters

IPI filtration depends primarily on two parameters, which can be set in the INPUT > Parameters
panel. These parameters include number of IPI repetitions, and minimum “Goodness”
probability.

 Number of IPI Repetitions
The IPI repetition parameter dictates how many times an IPI must be locally repeated
for it to be considered valid. A value of 0 indicates that IPIs do not need to be repeated.
This parameter must be a non-negative integer.

 Minimum “Goodness” Probability
Detected clicks are automatically classified as being “Good” (i.e. on-axis sperm whale
clicks) or “Bad” (i.e. off-axis clicks, dolphin clicks, noise, etc.). To do this, the classifier
assigns a probability to each click indicating how “Good” it is. The minimum “Goodness”
probability is the threshold that determines which label each click will receive. For
example, if set at 0.7, then all clicks with a probability greater than or equal to 0.7 will

- 13 -

be classified as “Good”, and everything else will be “Bad”. This parameter must be a
number between 0 and 1 inclusive.
NOTE: some features used by the classifier depend on pulse detection, and can only be
calculated if a click has at least two pulses. All clicks with fewer than two pulses are
immediately considered “Bad”. Therefore, setting the minimum “Goodness” probability
to 0 does not disable classification completely, because those clicks with too few pulses
will still be filtered out.

Of these two parameters, Number of IPI Repetitions has the strongest impact. Minimum
“Goodness” probability usually has subtle effects, unless set to extreme values (< 0.1 or > 0.9).

3.3 Data output

An output directory is created during each IPI compilation run. The name of this directory is

given automatically: it is equal to the name of the input file or folder, followed by “_IPIData#”,

where # is a positive integer. The output structure depends on the type of input (file or

directory), the output path, and whether or not outputs already exist.

 Differences based on input type
If the input path points to a single file, each output file will be written directly to the
output folder. However, if the input path points to a folder, then the output folder will
contain a subdirectory for each input file. These subdirectories will have exactly the
same name as their corresponding inputs.

 Output path
The main output directory will be created inside the folder pointed to by the output
path specified by the user.

 Presence of existing output
Existing output is not overwritten. If the output path already contains a folder for a
given input, then a new folder will be created each time the input is reprocessed. These
multiple outputs are differentiated by the numeric suffix at the end of the folder name.
So for example, if some input file “example.wav” is processed for the first time, the
name of its output directory will be “example_IPIData1”. If it is run again with the same
output path, then a new folder will be created called “example_IPIData2”.

Several output files will be created for each input file. These can be selected in the output
settings (discussed in later sections). However, in all cases, a log.txt file will be created for each
input file. This log file contains information on the input file, any problems that were
encountered, and the input parameters specified. If CABLE runs into any problems while
processing input, please include this log file in your report.

- 14 -

3.3.1 Specifying the output path

Output folders will be created inside the directory pointed to by the output path. There are
three ways to specify this path:

 Direct Entry
The output path can be entered directly in the edit field inside the OUTPUT > Directory
panel.

 Use Input Parent button
This will automatically assign the output path to point to the directory in which the
input file or folder is located.

 Select Directory button
Use this to browse for a folder to assign as the output path.

Note that input and output should be kept separate. If the input is a folder, the output path will
be considered invalid if it points to that same folder, or any folder within. In other words,
output may not be nested inside an input folder.

3.3.2 Output data files

CABLE can produce three different types of files as output. Whether these are created or not
depends on whether or not they are checked in the OUTPUT > Data Files panel. The options are
described below:

 All IPIs
This will create a CSV file containing IPI values (in milliseconds) for each click that was
detected. Along with this is the time of occurrence of each IPI (in seconds), its
classification probability, and whether or not it is precise. This type of file can be used
as input to quickly examine the effects of different filtration criteria (see section 3.1
Data input). However, note that specifying this output will increase execution time,
because IPIs will need to be calculated for all clicks.

 Filtered IPIs
This will create a CSV file containing only those IPI values that have been validated by all
steps in the filter (i.e. classification, precision, and repetition). IPIs are reported in
milliseconds. It also includes occurrence times in seconds. This type of file can be used
as input for quick clustering.

 Clusters
This will create one CSV file for every plausible Gaussian mixture model, as well as an
extra file listing the ΔBIC values for each model. The model files include the means (mu),
standard deviations (sigma), and component proportions (p) for every cluster. Means

- 15 -

and standard deviations correspond to the IPI scale and are measured in milliseconds. If
length estimates were also specified, those will be included in these files too (see
section 3.3.4 Length estimation).

3.3.3 Output cluster plots

Once CABLE has finished compiling and clustering IPIs for a file, the results can be displayed in a
series of plots. These plots can be displayed immediately on completion, and also saved to disk
as image files. Plot appearance, image file types, and other options are controlled under the
Plotting tab. If one of the Save to Disk options is enabled, image files will be created in the
output directory for each of the plots specified. Note however that plots will only be created if
there exists data (i.e., IPIs or valid models) to produce them. Cluster plots can also be recreated
at any time from cluster output files. Details are explained in section 4. Cluster Plotting.

Note that CABLE can only plot data for one input file at a time. If the input is a directory and
cluster plots are set to be displayed on completion, a plot will be displayed only for the most
recently completed file. It is also not possible to manipulate plots while the IPI compiler is
running. For these reasons, there is little advantage to enabling the Display on Completion
option when the input is a folder.

3.3.4 Length estimation

Body length estimates can be included in the cluster output files. These estimates are made
based on the mean IPI (mu) of each cluster. Length estimation equations can be selected in the
OUTPUT > Length Estimates listbox. It is possible to include more than one equation, or none at
all (press Ctrl + left click to deselect entries).

Length estimation equations are limited to polynomials. They are stored as lists of polynomial
coefficients, in order of decreasing power, inside text files within the LengthEquations folder.
One file exists for each equation, where the file name dictates the equation name. With this
system, it is possible to extend CABLE with your own length polynomials. By default, CABLE
comes with two equations that convert IPIs (in milliseconds) to meters. These are published
equations that were derived from regression analysis of IPI measures and photogrammetrically
estimated body lengths:

 Gordon (1991): 𝑦 = −0.001𝑥2 + 1.453𝑥 + 4.833
Based on 11 female sperm whales off Sri Lanka

 Growcott et al. (2011): 𝑦 = 1.258𝑥 + 5.736
Based on 33 large male sperm whales off Kaikoura, New Zealand

- 16 -

3.4 Running IPI compilation

Once input and output files have been specified, run CABLE by clicking the large green Run
button. While the routine is running, the Plotting and Advanced Settings tabs will be disabled.
The Run button will also be replaced with a red Abort button. Click this button to cancel the run
at any time. Depending on the current step of the routine, it may take a few seconds for
cancellation to take effect. Figure 2 shows an example of what CABLE looks like while compiling
IPIs.

Audio files can be quite large, which requires a lot of memory to process. If memory becomes
limited, the IPI compilation routine can become extremely slow and even fail. To avoid this
problem, CABLE analyzes audio files in separate segments. The results are pieced back together
after IPIs have been calculated.

The status of the routine is displayed in the white message box at the top left of the STATUS
panel. The STATUS panel also includes information on execution time, and the file currently
being worked on.

 Execution time
The routine will display the time at which it started, and the amount of time it has been
running for. If more than one file is being processed, it will also display an estimated
time of completion, which gets updated as each file finishes. However, note that the
amount of time the routine takes to process a file depends very heavily on the number
of clicks found in that file. Therefore, if you are processing a small number of files that
vary greatly in click density, estimated completion time can be inaccurate.

 File info
CABLE will display information on the current file being processed. This includes its
name, type (audio, full IPI file, filtered IPI file, etc.), duration, number of clicks detected,
and number of clicks that passed every filtration step. Duration and number of clicks
found is displayed for both the whole file and the segment being analysed.

 Progress bar
IPI compilation progress is also displayed visually with a progress bar. The bar is divided
based on how many files are being processed, and how many segments they are broken
into. The bar is coloured according to the status of each file. Figure 2 explains this in
further detail.

- 17 -

Figure 2: The Main tab during IPI compilation. In this example, the input path points to a folder
containing 5 files. Dark lines on the progress bar indicate file divisions, while light lines indicate segment
divisions. The progress bar colour code is as follows:

- Green: finished file
- Red: failed or unsupported file
- Yellow: file in progress

4. CLUSTER PLOTTING

CABLE can show the IPIs it has compiled and clustered as a series of plots. These plots include a
histogram of the filtered IPI distribution, and continuous lines depicting the probability
distributions of clusters found by Gaussian mixture modelling (see Figure 3). Cluster plotting is
controlled via the Plotting tab (Figure 4).

- 18 -

Figure 3: Example cluster plot. The histogram corresponds to the distribution of IPIs that passed every
filtration criterion. Bin width is equal to the sampling resolution of IPI analysis (that is, 1/48 ms). The
coloured lines correspond to the probability distributions of individual clusters in a Gaussian mixture
model. Only one model is plotted at a time.

- 19 -

Figure 4: The Plotting tab

4.1 Loading and displaying plots

Plots can be set to display automatically after CABLE has finished processing a file, but they can
also be created at any time. To do this, press the Load button in the DATA panel of the Plotting
tab, and select an output directory created by CABLE. For plots to be created, this directory
must contain a Filtered IPI file and associated cluster files. To delete a plot, press the Clear
button in the DATA panel, or the X button on the plot window. Data can only be plotted for one
file at a time.

Gaussian mixture modelling may yield more than one solution. ΔBIC indicates the relative
likelihood of a model, where a value of 0 corresponds to the “best” model. CABLE’s cluster
plotter displays each solution as a separate plot. You can select the model being displayed using
the popup menu in the DATA panel. The filtered IPI distribution alone (with no model fits) is
also a display option.

- 20 -

4.2 Plot display and saving options

The DISPLAY & SAVING OPTIONS panel allows you to control things such as the size of the plot
window, how the plot is rendered, and how to save it. Internally, figure saving is done using the
MATLAB ‘print’ command, which is a very flexible function. CABLE’s options essentially provide
an interface to ‘print’. For casual save operations, it is not necessary to understand how this
function works. However, if you need to use the more advanced options, then it helps to know
‘print’. The documentation for ‘print’ is available here:

https://www.mathworks.com/help/matlab/ref/print.html.

Note however that documentation is publically available for the latest version of MATLAB only.
CABLE 0.3 uses MATLAB version R2015a. Changes to ‘print’ in newer MATLAB versions are
probably unlikely, but this cannot be guaranteed. CABLE’s plot display and saving options are
described below.

 Units
The units in which the figure dimensions are specified. Options are “pixels”,
“centimeters”, and “inches”.

 Width
The figure width, in the units specified by the Units option.

 Height
The figure height, in the units specified by the Units option.

 Resolution (DPI)
The resolution of the figure when saved to an image file in DPI, or dots (pixels) per inch.
This can be any integer greater than 0, or the word ‘screen’ to use screen resolution. If
the figure units are in pixels, this is limited to screen resolution. Higher resolution
results in better quality figures, but larger file sizes. For publication-quality figures,
MATLAB suggests using 200 or 300 DPI.

 Renderer
The rendering method to use for both displaying and saving images. Options are
‘opengl’ and ‘painters’. In general, ‘opengl’ should be used for raster images, and
‘painters’ should be used for vector images. Other than this, it is usually not necessary
to change the renderer, unless you encounter rendering artefacts.

https://www.mathworks.com/help/matlab/ref/print.html

- 21 -

 File Types
This is a list of file types in which to save the figure. Note that these are not just file
extensions (so for example, for JPEG, use ‘jpeg’ instead of ‘jpg’). Note also that these
are not validated until runtime. Any invalid entries will simply be ignored, so be sure
that your entries are correct. Some common formats are listed below:

o Raster formats
 ‘png’ (24-bit PNG)
 ‘jpeg’ (24-bit JPEG)
 ‘bmp’ (24-bit BMP)

o Vector formats
 ‘tiff’ (compressed 24-bit TIFF)
 ‘pdf’ (full-page colour PDF)
 ‘svg’ (Scalable Vector Graphics)
 ‘epsc2’ (Encapsulated PostScript Level 2 with colour)

For the full list of supported file types, see the MATLAB documentation for ‘print’ (the
list is under the formattype parameter).

 ‘print’ Arguments
This is an advanced option that allows you to specify any additional arguments you wish
to MATLAB’s ‘print’ function. Enter each option in sequence, separated by a space
These options must also include the ‘-’ prefix. The rows in this field correspond to file
types. As an example, say for some reason you wanted to save two files: a PNG, and a
black-and-white EPS that included a TIFF preview and used a loose bounding box. The
File Types and ‘print’ Arguments fields would look as shown in Figure 5.

Figure 5: Example inputs for the File Types and ‘print’ Arguments fields in the cluster plotter’s
DISPLAY & SAVING OPTIONS panel.

To save a figure from the Plotting tab, press the Save button at the bottom of the DISPLAY &
SAVING OPTIONS panel. You can choose to save images for all models, or only select models.
The files will be saved inside the same output directory containing the data used to create the
plots.

4.3 Adjusting plot appearance

Plot appearance is highly customizable. Adjust the values in the APPEARANCE panel to make
the plot look the way you want. The options are described below.

- 22 -

 Axes Properties

o Box
Specifies if the axes should have a border or not.

o Title

Specifies if the title should be displayed or not.

o X Labels
Specifies if the X-axis label and tick values should be displayed or not.

o Y Labels (Count)
Specifies if the count axis and its tick values should be displayed or not. The
count axis always appears on the left.

o Y Labels (Prob. Density)
Specifies if the probability density axis and its tick values should be displayed or
not. If both the count and probability density axes exist, then the probability
density axis is displayed on the right. If only the probability density axis exists, it
is on the left.

o X Min
Determines the lower limit of the X-axis. This may be any non-negative number
smaller than X Max, or the strings ‘auto’ or ‘full’. ‘auto’ sets automatically
determined limits appropriate for the data. ‘full’ sets the limits equal to the
IPIRange parameter in the Advanced Settings tab.

o X Max
Determines the upper limit of the X-axis. This may be any nonnegative number
greater than X Min, or the strings ‘auto’ or ‘full’. ‘auto’ sets automatically
determined limits appropriate for the data. ‘full’ sets the limits equal to the
IPIRange parameter in the Advanced Settings tab.

o Y Max (Count)
Determines the upper Y limit based on the count axis. This may be any positive
number, or the string ‘auto’. ‘auto’ sets an automatically determined limit
appropriate for the data. If Y Max (Count) is adjusted, then Y Max (Prob. Density)
will automatically be adjusted accordingly.

- 23 -

o Y Max (Prob. Density)
Determines the upper Y limit based on the probability density axis. This may be
any positive number, or the string ‘auto’. ‘auto’ sets an automatically
determined limit appropriate for the data. If Y Max (Prob. Density) is adjusted,
then Y Max (Count) will automatically be adjusted accordingly.

o Tick Direction
Specifies if tick marks should point inside the plot area, or outside.

o Tick Length
Determines the length of all marks.

o Line Width
Determines the thickness of axes lines and tick marks.

o Font
Determines the fonts to be used for the plot title, labels, and tick values. Press
the Edit… button to change the font type, weight, and size.

o Label Font Size Multiplier
Determines how much larger (or smaller) the axis labels should be relative to
the base font size.

o Title Font Size Multiplier
Determines how much larger (or smaller) the title should be relative to the base
font size.

o Title Font Weight
Specifies if the title should be displayed in bold or normal font weight.

 Legend

o Enable
Specifies if the legend should be displayed or not.

o Box
Specifies if the legend should be enclosed in a border or not.

o Line Width
Determines the thickness of the legend border lines.

- 24 -

o Font
Determines the fonts to be used for the legend labels. Press the Edit… button to
change the font type, weight, and size.

 IPI Histogram

o Enable
Specifies if the IPI histogram should be displayed or not.

o Face Color
Determines the colour of the histogram. Click the coloured button to change
colour.

o Edge Color
Determines the colour of the histogram outline. Click the coloured button to
change colour.

o Line Style
Determines the appearance of the histogram outline (e.g. solid or dotted). It is
not possible to remove lines, but if you want to achieve this effect, you could
make Face Color and Edge Color the same.

o Line Width
Determines the thickness of the histogram outline.

 Cluster Lines

o Colormap
Specifies the colour scheme used for plotting cluster lines. Options are limited to
select built-in MATLAB colour maps, which are listed within this documentation
page: https://www.mathworks.com/help/matlab/ref/colormap.html.
Note that MATLAB occasionally modifies the colours in newer versions, so the
colours displayed in the documentation page might not be exactly the same as
the ones in CABLE.

o Line Style
Determines the appearance of the cluster lines (e.g. solid or dotted).

o Line Width
Determines the thickness of the cluster lines.

https://www.mathworks.com/help/matlab/ref/colormap.html

- 25 -

5. ADVANCED SETTINGS

In addition to the two basic parameters presented in the Main tab, there are several other
factors that control how IPI compilation is run. These are accessible via the Advanced Settings
tab (see Figure 6). Advanced parameters are grouped into categories, which are viewable via
subtabs.

Figure 6: The Advanced Settings tab

With the exception of the General parameters, it is discouraged to modify advanced parameter
values during casual use. The default values for these parameters have been worked out
thoroughly, and should be robust to most scenarios. They should be modified only for the sake
of experimentation. To restore the default values, click on the Reset All button.

Advanced parameters are presented in a table with three fields: Name, Value, and Error
Message. To change a parameter value, edit the Value field. If an edition is invalid, the reason
will be printed in the corresponding Error Message field. IPI compilation will not be able to run
if any parameter is invalid.

- 26 -

Each parameter is described below.

 General

o nCores
The number of CPU cores to use for parallel processing. Note that this
corresponds to the number of physical cores, not logical cores. Setting this to 1
disables parallel computing.

o recSplitDuration
The duration at which to split audio files into segments, in minutes. For
example, if set to 4, then audio files will be split into 4-minute intervals. Must be
larger than minSegmentDuration.

o minSegmentDuration
The minimum allowed duration of an audio segment, in minutes. If audio
splitting based on recSplitDuration would result in a segment that is shorter than
minSegmentDuration, then that split is not performed. For example, if
recSplitDuration is 4 and minSegmentDuration is 2, and a 9-minute file is being
processed, then that file will be split into 2 segments: one 4 minutes long, and
one 5 minutes long. It is not split into 3 segments, because then the last
segment would be 1-minute long, which is shorter than minSegmentDuration.
This parameter cannot be larger than recSplitDuration.

o channelIndex
This controls which channel of an audio file to use. If this number is larger than
the number of channels in an audio file, then that file will not be processed
successfully.

 Multi-Step

o IPIRange
The minimum and maximum limits of the range within which IPIs are calculated,
in milliseconds. Note that if there exist IPIs outside this range, then those IPIs
might either be missed (if too short), or have incorrect values (if too large). The
default range is that recommended by Marcoux et al. (2006).

o pulseDurationRange
The minimum and maximum expected duration of individual pulses within
sperm whale clicks. Units are in milliseconds. This parameter affects both click
detection and pulse detection.

- 27 -

o tukeyFalloffDuration
To minimize ringing artefacts in click spectra, a Tukey window is applied to each
click before performing the FFT, where the flat region encompasses the entire
range of a detected click. This parameter controls the extent of the window’s
falloff regions, measured in milliseconds. Setting this to 0 is equivalent to using a
rectangular window.

 Click Detection

o threshOn
The linear SNR threshold which controls the onset of click detection events.

o threshOff
The linear SNR threshold which dictates the limits of a click range.

o alphaSignal
Smoothing factor for the exponential signal power estimation filter.

o alphaNoiseOn
Smoothing factor for the exponential noise power estimation filter, used while a
click has been detected.

o alphaNoiseOff
Smoothing factor for the exponential noise power estimation filter, used while
only noise is present.

o minEchoProp
The minimum proportion of a click envelope peak beyond which the next click
will be considered an echo. Setting this too low may break up multi-pulsed
clicks, while setting it too high may cause clicks to merge with their reflections.

o maxClickDuration
The maximum allowed duration of a click, in milliseconds.

o minClickSep
The minimum expected separation between clicks, in milliseconds. This
parameter may help reduce the detection of echoes, but it only makes sense to
use if a single whale is present. By default, it is set to 0.

- 28 -

 Pulse Detection

o smoothBandwidths
A vector of bandwidths to use for waveform envelope smoothing, from
narrowest (small) to widest (large). Units are in milliseconds.

o nSmoothRuns
The number of times to run the envelope smoothing filter in succession.

o peakBaseHeightProp
The proportion of the peak-to-base height of a pulse to use as the reference for
estimating pulse durations.

o promThreshProp
A parameter used to determine the minimum prominence that a peak in the
smoothed envelope may have to indicate the presence of a pulse. It is a
proportion of the difference between the prominences of the most and least
prominent peaks in the smoothed envelope.

o minPromThreshScale
A scale factor relative to the RMS of the absolute value of the difference
between successive samples in the unsmoothed envelope. This is meant to
provide a measure of peak prominences for peaks which arise only from noise,
and is thus the minimum allowable prominence threshold.

 IPI Calculation and Validation

o doMethod_Autocorrelation
A Boolean value that determines if IPIs should be computed using the
autocorrelation method or not. Valid entries are ‘true’ or ‘false’.

o doMethod_Cepstrum
A Boolean value that determines if IPIs should be computed using the cepstrum
method or not. Valid entries are ‘true’ or ‘false’.

o useChiSquared_Autocorrelation
A Boolean value that determines if χ2 windowing should be used before
computing IPIs from autocorrelation. χ2 windowing was proposed by Goold
(1996) as a method to amplify the signal of subsequent pulses in sperm whale
clicks.

- 29 -

o useChiSquared_Cepstrum
A Boolean value that determines if χ2 windowing should be used before
computing IPIs from the cepstrum. χ2 windowing was proposed by Goold (1996)
as a method to amplify the signal of subsequent pulses in sperm whale clicks.

o maxIPIDeviation
The maximum acceptable difference between the IPI values of a click that were
computed using different methods (i.e. autocorrelation and cepstrum). This
parameter is what controls IPI precision. Any clicks whose individual IPI
estimates differ by a larger amount than maxIPIDeviation are rejected by the IPI
filtration routine. Units are in milliseconds.

o ICIRange
The minimum and maximum inter-click interval (ICI) limits within which
successive clicks are searched for. This is used when checking for IPI repetitions.
Units are in seconds.

o ICITol
The maximum expected difference in ICI between successive clicks in a click
train. This is used only when checking for 2 or more IPI repetitions. Units are in
seconds.

o IPITol
The maximum expected difference in IPI between successive clicks in a click
train. This is used when checking for IPI repetitions. Units are in milliseconds.

 Clustering

o KDEBandwidths
Narrow and wide bandwidths used during Gaussian kernel density estimation
(KDE). KDE is used to get an initial estimate of the minimum and maximum
number of IPI clusters that might be present. Units are in milliseconds.

o nkExtra
The number of extra clusters to test for beyond the KDE estimates. For example,
if set to 1, and a KDE suggests that 3 – 5 clusters are present, then GMMs will be
run for 2 – 6 clusters.

o shareSigma
A Boolean value indicating if every cluster in a GMM must have the same
standard deviation or not. Valid entries are ‘true’ or ‘false’.

- 30 -

o sigma2RegVal
Cluster variance regularization value. This is a small number added to the
variance of each cluster during the EM process. Valid entries are a single real
number, or the string ‘auto’. If set to ‘auto’, an appropriate regularization value
is set automatically based on the working sampling rate (48 kHz).

o EMTol
The EM algorithm estimates maximum likelihood through iterative computation.
EMTol is the tolerance value used to decide when the log-likelihood has
converged to a maximum.

o maxEMIterations
The maximum number of EM iterations allowed. GMMs that fail to converge
within maxEMIterations will not be counted as valid models.

o maxEMTries
The maximum number of times to try running the EM algorithm. In a few cases
(presumably caused by unusual initial conditions or atypical IPI distributions),
the EM algorithm can encounter errors. Sometimes, retrying with new initial
conditions fixes the problem.

- 31 -

6. REFERENCES

Adler-Fenchel, H. S. (1980). “Acoustically derived estimate of the size distribution for a sample
of sperm whales (Physeter catodon) in the Western North Atlantic,” Can. J. Fish. Aquat.
Sci. 37, 2358–2361.

Backus, R. H., and Schevill, W. E. (1966). “Physeter clicks,” in Whales, Dolphins, and Porpoises,
edited by K. S. Norris (University of California Press, Berkeley), pp. 510–527.

Goold, J. C. (1996). “Signal processing techniques for acoustic measurement of sperm whale
body lengths,” J. Acoust. Soc. Am. 100, 3431–3441.

Gordon, J. C. D. (1991). “Evaluation of a method for determining the length of sperm whales
(Physeter catodon) from their vocalizations,” J. Zool. Lond. 224, 301–314.

Growcott, A., Miller, B., Sirguey, P., Slooten, E., and Dawson, S. (2011). “Measuring body length
of male sperm whales from their clicks: The relationship between inter-pulse intervals
and photogrammetrically measured lengths,” J. Acoust. Soc. Am. 130, 568–573.

Marcoux, M., Whitehead, H., and Rendell, L. (2006). “Coda vocalizations recorded in breeding
areas are almost entirely produced by mature female sperm whales (Physeter
macrocephalus),” Can. J. Zool. 84, 609–614.

Møhl, B. (2001). “Sound transmission in the nose of the sperm whale Physeter catodon. A post
mortem study,” J. Comp. Physiol. [A] 187, 335–340.

Møhl, B., Larsen, E., and Amundin, M. (1981). ‘‘Sperm whale size determination: Outlines of an
acoustic approach,” FAO Fisheries Ser. 5, 327–332.

Nishiwaki, N., Oshumi, S., and Maeda, Y. (1963). “Changes in form of the sperm whale
accompanied with growth,” Sci. Rep. Wh. Res. Inst. Tokyo 17, 1–13.

Norris, K. S., and Harvey, G. W. (1972). “A theory for the function of the spermaceti organ of
the sperm whale (Physter catodon L.),” in Animal Orientation and Navigation, edited by
S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs, and R. E. Belleville, SP-262 (NASA,
Washington, DC), pp. 397–417.

Rhinelander, M. Q., and Dawson, S. M. (2004). “Measuring sperm whales from their clicks:
Stability of interpulse intervals and validation that they indicate whale length,” J. Acoust.
Soc. Am. 115, 1826–1831.

Whitehead, H., and Weilgart, L. (1990). “Click rates from sperm whales,” J. Acoust. Soc. Am. 87,
1798–1806.

- 32 -

Zimmer, W. M. X., Madsen, P. T., Teloni, V., Johnson, M. P., and Tyack, P. L. (2005). “Off-axis
effects on the multipulse structure of sperm whale usual clicks with implications for
sound production,” J. Acoust. Soc. Am. 118, 3337–3345.

